
International Conference on Engineering Education and Research "Progress Through Partnership"
© 2004 VSB-TUO, Ostrava, ISSN 1562-3580

Striving for Excellence in Teaching Graduate Software Engineering by
Using a Helycoidal-based Educational Program

Justo N. HIDALGO, Jesús PANCORBO, Pilar VÉLEZ, Alberto LÓPEZ
Department of Computer Science and Engineering, University Antonio de Nebrija, c/Pirineos, 55

MADRID, jhidalgo@nebrija.es, jpancorb@nebrija.es, pvelez@nebrija.es, alopezro@nebrija.es

KEYWORDS: graduate, helycoidal, project-based, iterative, workflow

ABSTRACT: Current Software Engineering practicioners need constant recycling with the new
technologies appearing every year and state-of-the-art methodologies and techniques, proven nowadays
as "best practices". Teaching software engineering in a Master's degree requires a deep effort by the
students, for they must achieve a level of excellence which allows them to successfully participate in many
kinds of projects. Faculty, coming from both academic and industrial worlds, must comprise all of their
experience in a single year, so that students can understand all of the implications of software
engineering, both from technical and business viewpoints. This paper introduces an innovative
educational program in which students apply their theoretical knowledge in three different projects: an
industrial-based project,a Public Service project, and a start-up internet-based one. This methodology,
which we called "helycoidal", is based on a matrix, in which the columns are the different projects
exposed to the students, and the rows are the workflows. At the end of each row, the student has mastered
one specific discipline (project planning, social abilities, analysis & design, technology and development,
deployment and peripheral activities, such as security, law and documentation techniques); the student
has learnt how to apply it to a big project, a bureaucratic one, and a short but high-pressured one,
understanding the similarities and, also the differences among them. The student also learns how to
handle real-world problems, such as configuration management and operating system's version
differences. This approach flies away from current programs which are based in a single project -
therefore homogeneous- and from the case-based programs, which prevent the students from fully
understanding real-size problems. The paper shows in detail how this approach is developed. Besides,
three sample project definitions created and monitored by different experts in each sector, are depicted
and fully explained to better understand the scope of this program.

1 INTRODUCTION
Due to the Bologna convention, the European Space for Higher Education is changing dramatically

[1]. European universities must face new challenges in undergraduate as well as in graduate studies, so
they can better server global students’ new requirements and needs.

In particular, Master degrees in Spain have never been included into the regulated education, which
has therefore given the chance to private institutions to compete in this area. MBAs and technical masters
are offered by public and private universities, and also by private business schools.

Engineering-related masters are now becoming more important than ever. Many technical
undergraduate programs are going to be shortened to four years, from a classical duration of four or five
years, thus creating the necessity of high-level master degrees which deepen into more specific areas,
useful both to research and industrial world.

Software engineering is a very young profession which is maturing very fast. Due to the
heterogeneous requirements it has got, from pure sciences such as math or logic, to economics or
sociology, four years is clearly not enough time for a practicioner to master everything a project manager
must know.

Besides, because of its lack of maturity and technology’s fast pace, professionals are likely to become
obsolete if they spend too much time in a single project, or in pure managerial aspects. Software
engineers who decide to take a Master’s degree to update or advance their technical knowledge want to
optimize their learning or recycling curve so that in one year they can be adequately trained to face high-
level project management and leadership at every possible level –planning, architecture or development-.

1415

Classic software engineering masters are usually divided in different subjects, taught by experts in
that particular field, in a sequential way. Students improve their theoretical knowledge of the field, and
apply it to some kind of lab, exercise or activity, either individually or in a team. The main problems with
this approach are the following:

1. Current software engineering processes are iterative and incremental-based. This model is not
replicated in the degree which is usually taught in a sequential way.

2. Software engineering projects are very heterogeneous. Even though it can not be possible to
comprise them all in a single course, the typical case method used in MBAs should be
adjusted to this situation.

3. This heterogeneity implies the use of different methodologies, development tools and
hardware systems, something which is not seen in many technical masters.

2 CHALLENGES OF LEARNING SOFTWARE ENGINEERING
Most of Software Engineers work in very heterogeneous projects when advacing in their professional

career, mainly because this engineering is not as specialized as other ones, in which each professional
bases their daily work in particular subjects of the area. Thus, a Software Engineer must be able to apply
many different techniques, from management to technical, but also economic or emotional, all of which
will be different depending on what project they are working on. Of course, mastering all of them takes
much time and effort, but a Master degree should, at least allow for the students to understand each of
them, and get to know when to apply their different characteristics.

The main challenges to create an effective graduate degree on software engineering must be:
1. To teach the most important theoretical aspects related to software engineering, in topics such

as project management, economics, requirements engineering, design or development
technologies.

2. To allow for the students to apply these concepts into effective industry-based cases. Even
more, that students could develop some of their work on real projects, taking profit of
companies which sponsorize the graduate course.

3. These cases should be based on different basis, such as the type of client, hardware or
software architecture, or legal issues.

And the most important one: how to achieve a reasonable degree of mastering all of these areas in a

single year?

This article proposes an innovative methodology, which is based in three basic ideas:
- The successful implementation of a mechanism which allows the students to success on the

different topics addressed by SWEBOK [2] as everything that a Software Engineer should
master. Besides, some of the topics in PMBOK [3] are also taken into account.

- The case method, used by most MBAs, is a key point of this methodology, for it helps the
student to apply all of the theoretical knowledge explained, in a very realistic way.

- The helycoidal methodology, used in the Business School of University Antonio de Nebrija, is
the main innovation of this technical master, for it provides the student a very effective –though
stressing- way of learning how each different discipline and topic can be used in different types
of projects.

The following chapter describes in detail how this helycoidal-based program is structured.

3 THEMATIC AREAS
Creating a software engineering graduate program useful for both young and expert professionals is a

very hard and difficult task. Young people tend to focus their interest on development activities, and still
have not got enough experience to understand what industry usually needs from them. On the other side,
professionals with three or more years of experience tend to demand more information to the program

1416

about project management or emotional skills which allow for them to improve their status in the
company they are working at. But also, some of these professionals need to acquire again some of the
theoretical concepts which might not have been used by them during last years, or update some of the
knowledge –p.e. many experts are still not used to advanced object-oriented or aspect-oriented techniques
which are being used in many projects now-.

The educational program presented here takes into account the areas addressed by SWEBOK. This

Book of Knowledge presents the topics which a professional Software Engineer should master so to better
face an industry-size project.

The different areas which are depicted in the Master’s degree are the following:
1. Project Management: this area worries about topics such as resource, cost or time management.
2. Directive abilities and teamwork: every software project is a multidisciplinary job in which

emotional abilities are much more important than what it was tought twenty years ago. The
concept of a lonely software developer is no longer valid, and being able to teamwork, to
negotiate, and having personal characteristics such as empathy or assertivity are crucial for a
software engineer and project to succeed. Work by [4], [5] or [6] has been taken into account for
this program.

3. Analysis and Design: this area focuses on the architectural and methodological sides of the
project. Choosing a software process, such as Unified Process, Metrica v3 or Agile ones, such as
Extreme Programming, is crucial for the software to be adequately implemented and finished.
Besides, this area will be used for the teachers to discuss which current architecture patterns can
be used in small, medium or king-size projects.

4. Technology and Development: what technologies and development tools are being used
nowadays, and which ones might find their way in a near future, are the focus of this area.

5. Peripheral activities: due to time constraints, some important topics are left to be discussed in a
single area. Concepts such as Patenting, Documentation techniques, cooperative & collaborative
software, or software-related laws must be part of a professional learning process.

More detail for each areas are depicted below.

3.1 Area I: Project Management
A project is a set of related tasks which must be managed in order to obtain a product in a given time

limit, and with limited resources. Every software engineer must organize themselves so that their tasks
can be accomplished with these constraints. PMBOK is used as the basic resource for this area, and,
mainly, information about cost, resource and time management is given to the students. Some other topics
such as outsourcing control or quality and metric basics are also studied.

3.2 Area II: Directive Abilities and Teamwork
Technical skills are just not enough to excel in a software project. Teamwork is essential, as well as

other emotional abilities which, in the last years, have at last been recognized as an integral part of an
engineer’s education. Factors such as self-awareness, empathy, self-control or assertivity must be learnt,
practiced and applied but project leaders, designers and developers as a whole. Students must be
evaluated not only as good technicians, but also as corporative professionals.

3.3 Area III: Analysis and Design

1417

But, of course, most of software engineers actually perform their job in the technical side of the
project spectrum. Students face in this area two different, but closely related subjects: (1) Software
methodologies: depending on the type of the project or client, different methodologies and process must
be benchmarked and applied. Most common ones can be the Unified Process, Metrica or Agile ones such
as Extreme Programming, but there are many to look after. (2) Design aspects: advanced object-oriented
design characteristics, aspect-oriented programming, component-oriented design, or detailed study of
most popular and useful architectures –client/server, message-oriented middleware, peer-to-peer, and so

on-, along with mastering of distributed systems building, are just a few of the topics that an engineer
must, at least, take into consideration.

3.4 Area IV: Technology and Development
In this area students face current and potential technologies, such as .NET [7], J2EE (Java 2

Enterprise Edition) [8], OMG’s CORBA [9], LAMP (Linux-Apache-MySQL-PHP) programming [10],
wireless or XML (eXtended Markup Language) [11]. All these technologies must be known by the
student, but also with some kind of practice so that, when a real project comes, they can not only know of
their existence, but also decide about their adequacy for a given set of requirements and constraints.

This area is also the one in which students learn about different hardware systems, such as UNIX
server configurations, Microsoft’s Windows or Open Source’s Linux, and how to handle enterprise-size
challenges, like load balancing, high availability, replication, and so on.

At last, students must use configuration and version management tools for a correct implementation
of teamwork practices.

3.5 Area V: Peripheral activities
Though young, software engineering is growing and maturing very fast, so even a full and intense

year of learning might not be enough. This area tries to pass by a range of subjects which are important
enough for a software engineer to take a look at, and grasp the essence of what they might probably need
in the near future. Patent information, documentation techniques, quality standards and certification, legal
environments or advanced financial concepts –beyond what might have been told in the Area I- are
examples of what the student can find here.

Until now, the structure of the course, though very intense and updated, is very classical. Some of the
challenges depicted in chapter 2 are not yet solved. Following chapter shows how this areas are actually
just part of the whole methodology of the course program.

4 THE HELYCOIDAL-BASED EDUCATIONAL PROGRAM
Classic courses are structured by phases, just as the waterfall lyfecycle model had been used in

software project for years. Previous chapter showed a structure which could well had been used by many
graduate courses on software engineering.

That way, students are visited by different experts which spend a few days or weeks with the students
talking about their experience, and, sometimes, asking for the students to study, design and/or implement
some case study.

What is wrong with it? Basically, what these students are doing is the same that undergrads perform:
lab-based implementations, which are very small prototypes of real-world cases. Important requirements
in enterprise-size products such as load balancing, time performance or stress testing are usually
neglected or, at most, briefly mentioned. Besides, each expert tells about their experience, which, even
though it might appear as a very interesting idea, if it is not managed and controlled, can provoke many
different problems, such as overlapping, lack of global goals, and, in general, a sense of “anarchy”,
broadly apart from what a structured engineering course should teach. Heterogeneity is a good idea, but
as long as it is adequately deployed.

Figure 1 shows the basics of the program structure presented in this paper.

1418

Project A Project B Project C Evaluation

Definition of Project Plan for cost, resource and time PresentationProject
Management

PresentationTeamwork, bureaucratic and organizacional structure Emotional
Abilities

PresentationMethodology, architecture and design of the project Análisis and
Design

PresentationTechnologic decisions, development and deployment activities Technology and
Development

Final
Presentation

Software Quality, Documentation, Legal sigues, and so on Peripheral
Activities

Figure 1: general structure of the helycoidal-based program

The idea behind this structure is the following: instead of focusing on the topic areas, the program is

based on “project contexts”, that is, a set of enterprise-wide case studies, each of which is a very detailed
example of a typical project. As it will be explained in the following chapter, the course is initially
designed to examine and work on three different projects, but the structure has been built so that any
number of projects can be used, as long as it follows every single topic area.

Once the projects have been initially described at the beginning of the graduate course, students face
each one of the topic areas, working on it over all of the projects, in a sequential way; obviously, basic
and global concepts are explained first, so that students start the projects with a good background. For
example, at the beginning of the academic year, students will learn about project management, and how it
will be applied to the first project. Once students have mastered it, they will have to use their knowledge
to plan the second project. Some of the information used in the first project will be used in the second
one, but also some new requirements and constraints will force the students to reconsider some of the
decisions they made in the previous one. The same will happen in the third project. At the end of this
area, students will have accomplished the following goals:

1. They will have learnt about common decisions which will be usually taken in almost any kind
of project, because they will have used it in all three projects.

2. Nevertheless, students will understand that technical, management or political constraints
determine some of the deliverables, so they will learn not to take anything for granted, it does
not matter how many times they have applied it before.

Whenever students are finished with a particular area, and have come to a set of conclusions, students

advance to the following area (p.e. Analysis and Design), starting from the first project.
The course is linearly taught row by row, so at the end of each one, the student has mastered one

specific discipline because they have had to apply it to three totally different projects, understanding the
similarities and, also the differences among them.

5 ORGANIZATION OF THE PROGRAM
The creation of this program faces many more challenges and difficulties than a classic sequentially-

based course. Thus, much more work from the academic board is required:

1419

- Projects must be redefined every single year, for one of the most important keypoints to
achieve, comes from the set of requirements and constraints that students know at the
beginning of the graduate course, for each individual project.

- Every project must be obtained from real-world situations, so teachers or mentors should come
from different sectors of activity, such as enterprise, industry or Public Service institutions. A
close and intensive teamwork between the academic board and industry professionals must be
done in order to organize, rearrange and structure each case study, and divide them into the
different topic areas. To achieve this point, it is recommendable that the program is
sponsorized for at least two software development or consulting companies.

- Every project must be an “almost perfect” example of what industry requires from software
engineers, either in project management, architecture requirements, technologies utilized or
legal aspects. This may require an exhaustive search for different project cases.

- The most crucial aspect of this course is the coordination among all the teachers and
instructors. Even though they might come from different companies, universities or institutions,
they must share:
o A common understanding of each of the projects in which they are involved.
o A common set of goals.
o The understanding of what the others are teaching, so that no unnecessary overlapping is

made.

To accomplish these and other challenges, the required organization is the following (figure 2):

Figure 2: Organizational structure

Industry sponsors

Project A’s
coordinator

Project A’s
coordinator

Project A’s
coordinator

Academic Board

Master degree’s
director

The Master’s director should belong to the Academic Board, but also has some industry background

or at least some experience on software engineering projects. This director is also responsible of the
organization of each topic area.

As it can be seen on the figure, each project has also a designated project coordinator, responsible for
its detailed description, and its adequate relationship with the others. This coordinators should come from
industry, and, if possible, be involved in the real project which the case is derived from.

Finally, each teacher is responsible for their subjects, and also for their related labs. They should
report both the project coordinator and master’s director.

6 EVALUATION OF THE PROGRAM
Another important aspect is how this program can be evaluated, or more specifically, how student’s

work, effort and results can be appropriately taken into account. The decisions have been the following,
along with an explanation of the reasons which led to them:

1420

- Each subject (academic lectures) can be optionally evaluated by a teacher. This helps the
Academic Board to check the topics in which each student is stronger or weaker. However, the
teacher must remember that students will be working on the projects from the beginning of the
course. As usual the teacher can use one or more of the following tools:
o Written examination.
o Lab
o Written report.

- At the end of each area, the artifacts generated by each team –documents, prototypes, and so
on- will be evaluated, and a short oral presentation will be given to the Academic Board.
Students which fail this evaluation will have another chance at the end of the course. This
approach has the following advantages:
o Because of how the course is organized, professionals might choose to take only a single

area. These students will be evaluated at the same time that the whole Master’s students.
o The presentation in front of the Academic Board must be understood by the students as

any enterprise’s Board meeting, in which a particular project is to be accepted or denied.
o The presentation helps the students to take profit from the emotional intelligence and

directive abilities learnt in class.

At the end of the academic course, another presentation will be performed by each team, but in this

case not only the Academic Board will be involved, but also the companies and institutions which might
have been involved in the Master’s program. This way, students will actually be evaluated on an
industry’s basis.

7 PROGRAM STRUCTURE AND PROJECT DESCRIPTIONS IN COURSE 2004/05
The structure of this course is designed and planned to be used in the first edition of the Executive

Master on Advanced Software Engineering and Development of the Department of Computer Science
and Engineering of University Antonio de Nebrija in Madrid, Spain, 2004/05. During this academic
course, 2003/04, a minimized version of the structure has been used in two undergraduate courses on
Software Engineering –Software Engineering I and II- [12]. The Master’s degree will have 300 hours (30
credits of work) of presential teaching during a whole year. The different activities to be realized by the
students will have to be achieved by their own, even though a computer lab and different teamwork
offices will be available for them for the whole week. The credit division for each topic area is as follows:

1. Project Management - 5% (15h/300h) (1.5 credits)
2. Directive Abilities and Teamwork - 5% (15h/300h) (1.5 credits)
3. Analysis and Design - 25% (75h/300h) (7.5 credits)
4. Technologies and Development - 60% (180h/300h) (18 credits)
5. Peripheral activities - 5% (15h/300h) (1.5 credits)

Project definition, as it has been described previously, is the most important and critical task to be

performed each year. The adequacy of each project to the defined project areas, and how they comprise
most of the current and potential methodologies, technologies and management techniques, are the
keypoint which will assure the success of the program.

For course 2004/05, three projects have been defined:
1. Public Service project
2. Enterprise-wide project
3. Medium-size dynamic project

7.1 Public Service Project
This project will be structured as if students belong to a private consulting and development

company, which obtains a contract from some Ministry or Public Administration to build an application

1421

which will be used by the citizens of a city, community or state. In course 2003/04, the project will be the
construction of citizen’s web-based access to public services. Students will have to create a general
framework which allows for fast implementation of different services. Therefore, they will have to design
a component-based architecture, which main elements will be: security –AAA-, design of electronic
signature, content management, service personalization (myPortal), and internacionalization. An
application of this framework will be a prototype implementation of Automatic Payment of Taxes.

The software methodology which will be used is Metrica v3, standard in Spanish Public
Administration.

The Hardware and Software requirements will be the following:
- Server: Netra 1100
- Operating System: UNIX System (Sun Solaris or HP-UX)
- Web and Application Server: SunONE, BEA WebLogic or IBM WebSphere
- Database: Oracle 9i
- Software development: J2EE/XML/RMI/CORBA/SOAP
- Configuration management: CVS

7.2 Enterprise-wide Project
Students belong to an ISP/ASP (Internet Service Provider / Application Service Provider), and are

asked to build all the required infrastructure to provide internet domain hosting and associated services,
such as: automatic domain provisioning, electronic mail under own domain, web services, DNS automatic
management, and so on.

The software methodology which will be used is the Unified Process as defined by Rational, and with
OMG UML as its modeling language.

The Hardware and Software requirements will be the following:
- Server: HP server.
- Operating System: Windows Server 2003.
- Web and Application Server: Microsoft Internet Information Server.
- Database: SQLServer 2000.
- Software development: .NET (using Visual Studio .NET on C#)/XML/WebServices.
- Configuration management: Microsoft SourceSafe.

7.3 Medium-size Dynamic Project
Students belong to the Information Services Department of an academic institution, and are asked to

design and implement a low-cost but highly-available tool which allow for teachers and students to work
in a cooperative environment.. Teachers will be able to coordinate what they are showing in their
computers with what students are seeing, allowing for bidirectional communication. Students will be
allowed to talk among them, and with teacher, but every single piece of data will be stored in a server so
that further analysis could be done off-line. Students are asked to produce several releases during the
duration of the project [13].

The software methodology which will be used is eXtreme Programming, so that students learn to use

Agile Programming techniques.
The Hardware and Software requirements will be the following:
- Server: Dell PC
- Operating System: Linux System
- Web and Application Server: Jakarta Apache/ Tomcat
- Database: MySQL
- Software development: PHP
- Configuration management: CVS or phpGroupware.

1422

1423

8 CONCLUSIONS AND FUTURE WORK
This paper shows the structure of an innovative program for teaching advanced Software Engineering

to graduate students, focusing on professionals with more than three years of experience. The use of an
helycoidal-based structure allows for the student to fully understand each of the topics after having
worked in three different projects, each one of them providing different but always stimulating
challenges.

The advantage of this program is clear: the student, after a year of hard work, will have managed,
analyzed, design, implemented, tested and presented three industry-level projects to a board of academic
and enterprise-related professionals which will evaluated their job.

Besides, the teach-by-provoking methodology forces students to make decisions and commit several
mistakes, which will help them for the near future.

Technical difficulties arise because every project requires different environments, so a very complete

laboratory must be provided. The best answer to this challenge is for these hardware and software
providers to become sponsors of the course, to obtain a “win-win” situation.

The main difficulties come from the same reason students must face a hard but fruitful year:

academic organization, project description and definition, teacher election, ... must be of the highest
quality, and must be revised every single year. It can be said that the creation of this academic course
must apply most of the project management and directive abilities that students will study the following
year. But the authors of this paper believe that the skills obtained by the students will help Software
Engineering to obtain the degree of recognition that the society is demanding.

REFERENCES
[1] Council of Europe. The Europe of Cultural Cooperation: Bologna Process. Available from web:

<URL: www.coe.int/T/E/Cultural_Co-
operation/education/Higher_education/Activities/Bologna_Process/default.asp>

[2] Guide to Software Engineering Body of Knowledge (SWEBOK). Available from web: <URL:
www.swebok.org>

[3] Guide to Project Management Body of Knowledge (PMBOK). Available from web: <URL:
www.pmi.org>

[4] GOLEMAN, D. 1997. Emotional Intelligence. Why it can matter more than IQ. Bantam. 0553375067.
[5] GOLEMAN, D. 2000. Working with Emotional Intelligence. Bantam. 0553378589
[6] SEGAL, J. S. 1997. Raising your Emotional Intelligence: A Practical Guide. Henry Holt & Company.

0805051511.
[7] Microsoft .NET Distributed Technology. Available from web: <URL: www.microsoft.com/net>
[8] Sun Java 2 Enterprise Edition. Available from web: <URL: java.sun.com/j2ee>
[9] OMG CORBA. Available from web: <URL: www.omg.org>
[10] ONLAMP: O’Reilly resources about LAMP technologies. Available from web: <URL:

www.onlamp.com>
[11] XML.com: Information and resources about XML. Available from web: <URL: www.xml.com>
[12] HIDALGO, J. Nebrija University’s Software Engineering Web Site. Available only in Spanish from

web: <URL: www.nebrija.es/~jhidalgo>.
[13] GARRIDO, M., PANCORBO, J., HIDALGO, J. Collaborative Compilation: An Experience on

Using Groupware Tools Applied To Computer Programming Learning. To be published on the
International Conference on Engineering Education and Research, iCEER 2004.

http://www.swebok.org/
http://www.microsoft.com/net
http://www.onlamp.com/

