
International Conference on Engineering Education and Research “Progress Through Partnership”
© 2004 VŠB-TUO, Ostrava, ISSN 1562-3580

Combining Engineering Problem Solving with Numerical Methods to
Enhance Learning Effectiveness

Mordechai SHACHAM
Chem. Eng. Dept, Ben-Gurion Univ. of the Negev, Beer-Sheva 84105, Israel, e-mail:

shacham@bgumail.bgu.ac.il,

URL http://www.bgu.ac.il/chem_eng/pages/staff/Mordechai%20Shacham%20.htm

Michael B. CUTLIP
Chem. Eng. Dept., University of Connecticut, Storrs, CT 06269, USA, e-mail: michael.cutlip@uconn.edu

URL http://www.engr.uconn.edu/cheg/cheg_fac_cutlip.htm

KEYWORDS: problem-solving, numerical, programming, self-grading

ABSTRACT: A major challenge in teaching numerical methods to engineering students is to provide
stimulating student motivation. The examples that are provided in most numerical methods textbooks
typically do not establish the necessary content connections with the engineering student’s engineering
major. In order to increase student motivation, they need to be shown practical examples from their
particular fields that are best solved by using numerical methods. The dilemma here is that practical
examples can be rather complex, and their coding and debugging may take too long, thus reducing the
time available for learning the subject matter.

In this paper we demonstrate, using two practical examples from the fluid mechanics field, the
several benefits of the use of a number of software packages in teaching numerical methods. In the two
examples the POLYMATH package, which is a user-friendly numerical problem-solving package, is used
for the preparation, coding and debugging of the mathematical model. Once a correct, verified solution
has been obtained for a particular model a different software package, more appropriate for coding the
numerical solution algorithm can be used. In the first example Excel is used for programming the
"successive substitution" method. In the second example MATLAB is used for programming Broyden's
"quasi-Newton" algorithm. It is shown that the separation between the preparation and the debugging of
the mathematical model and the numerical solution can alleviate considerably the programming of the
solution algorithm. It can also help to identify weak points of the basic algorithm such as the need to
rescale the functions and variables, start the iterations from points close to the solution or carry out one
dimensional search for minimum.

1 INTRODUCTION
 A major challenge in teaching numerical methods to engineering students is to provide stimulating

student motivation. The examples that are provided in most numerical methods textbooks typically do not
establish the necessary content connections with the engineering student’s engineering major. In order to
increase student motivation, they need to be shown practical examples from their particular fields that are
best solved by using numerical methods. The dilemma here is that practical examples can be rather
complex, and their coding and debugging may take too long, thus reducing the time available for learning
the subject matter. The approach that we have developed is the use of several software packages in the
numerical analysis course. The POLYMATH1 package, which is a user-friendly numerical problem-
solving package, is used for preparing, coding and debugging the mathematical model of the problem.
The latest version of this software automatically outputs the equations in the format acceptable to a
spreadsheet program, Excel2. The POLYMATH model can be easily converted to a MATLAB3 function,

1 POLYMATH is copyrighted by M. Shacham, M. B. Cutlip and M. Elly (http://www.polymath-software.com/).
2 Excel is a trademark of Microsoft Corporation (http://www.microsoft.com)
3 MATLAB is a trademark of The MathWorks, Inc. (http://www.mathworks.com).

959

mailto:shacham@bgumail.bgu.ac.il
http://www.bgu.ac.il/chem_eng/pages/staff/Mordechai Shacham .htm
mailto:michael.cutlip@uconn.edu
http://www.engr.uconn.edu/cheg/cheg_fac_cutlip.htm
http://www.polymath-software.com/
http://www.microsoft.com/
http://www.mathworks.com/

also (see for example Shacham et al, 2003). The students can concentrate on preparing the MATLAB
code or the Excel spreadsheet for the numerical solution algorithms using the mathematical model of the
problem which has been already verified. This enables the use of realistic examples, thus increasing the
students' motivation without spending too much time in the technical details of the model preparation.

 In the following two examples from the fluid mechanics field are used to demonstrate this new
approach and its potential benefits.

2 EXAMPLE 1 - CALCULATION OF THE FLOW RATE IN A PIPELINE USING
SUCCESSIVE SUBSTITUTION
 This example is based on Problem 5.10 presented by Cutlip and Shacham (1999). The detailed

problem statement is shown in Appendix A. The problem involves calculation of flow velocity and flow
rate in a pipeline configuration for a large number of combinations of pipe lengths and diameters. The
results should be presented in tabular and graphical forms. The solution for one set of pipe diameter and
length values involves solution of a nonlinear equation, the general mechanical energy balance on an
incompressible fluid, where the friction factor is function of the Reynold's number (thus the flow
velocity). The successive substitution method has long been used for solving this type of problems (even
when graphical solution techniques were used), and it is known that this technique converges very fast for
flow velocity calculations. The successive substitution method can be conveniently programmed with
Excel, but the direct input of the model equations into Excel can be a tedious and error-prone process. A
better approach for students is to first enter the equations into POLYMATH that requires minimal
changes in the naming of the variables, solve the equations for one set of parameter values, and then
compare the results with the solution provided in the problem statement. After this is completed, an
option within POLYMATH can be used to convert the set of equations into a spreadsheet within Excel
that can immediately be used to also obtain a problem solution.

Figure 1 - POLYMATH Equation Entry for Example 1

 The equations, as entered into the POLYMATH program, are shown in Figure 1. Students find the
"user friendly" features of POLYMATH very helpful while entering the equations: The notation used in
the equation entry is almost the same as in the problem definition (except that no Greek characters can be
used). POLYMATH issues warnings for undefined variables so that errors such as using the letter o in the
variable name (like in eoD) in one equation and the number 0 in another equation can be easily detected.
The needed equations can be entered in the same order as they appear in the problem definition even if
the calculation order must be different since POLYMATH reorders the equations when the calculations
are made. For example, the necessary calculation for the friction factor, fF, first involves ε/D and then

960

Reynolds number, Re. However POLYMATH allows direct entry of the equations in the same order as
they are defined in the problem statement.

 Common mistakes in entering the model equations typically involve inconsistency in the units used
(i.e. inches instead of feet), wrong sign of the pressure or elevation difference, and inappropriate use of
parenthesis in Equations (A-1) and (A-4). POLYMATH enables much easier detection of errors in the
model equations because the model debugging stage is clearly separated from the numerical solution
stage.

Figure 2 - POLYMATH Equations Converted to Excel Formulas for Example 1

Figure 3 - Excel Worksheet with Numerical Results and Documentation for Example 1

 After the correct solution as given in the problem statement is obtained, the model equation set can
be converted to an Excel worksheet using a single command within POLYMATH. Part of the Excel
worksheet generated is shown in Figure 2 where the variable cell calculations are indicated.

 The variable names are translated to cell addresses, intrinsic function names are changed as
necessary, and the syntax of the if statement is changed. The equations are rearranged in a form that
appropriate for solving the equation using the goal seek or solver tools available within Excel. The
complete worksheet with the solution obtained using goal seek is shown in Figure 3.

 The numerical results are identical to those obtained by POLYMATH, and thus the correctness of the
Excel solution has been verified. The variable names in column C, the POLYMATH equations in column
E, and the variable descriptions in column F provide complete documentation for the Excel formulas in
column C.

961

 The successive substitution method can be implemented by revising the equations that are functions
of the unknown flow velocity v and adding Equation (A-6) for estimating the error in the current value of
vi as shown below.

 Arranging the variables in consecutive columns, copying and pasting them in consecutive rows and
substituting vi+1 in the cell that contains vi starting iteration No. 1 yields the desired solution as obtained
by the successive substitution method (see Table 1).

 After the correct solution has been obtained for one set of pipe length and diameter values the "Two
Input Table" option of Excel can be conveniently used for carrying out all the calculations that required in
part (b) of the problem statement in Appendix A. The plot of flow velocity for all combinations of pipe
length and diameter is shown in Figure 4.

3 EXAMPLE 2 - FLOW DISTRIBUTION IN A PIPELINE NETWORK SOLVED BY
BROYDEN’S METHOD
 This example is based on Problem 5.11 presented by Cutlip and Shacham(1999). The detailed

problem statement is shown in Appendix B. The problem involves calculation of flow rates and pressure
drops in a pipeline network that includes seven interconnected pipe segments. The problem can be
brought into a form of seven algebraic equations (where three of them are nonlinear) with seven unknown
pipe-segment flow rates. The use of Broyden's Quasi-Newton method for this type of problems is
attractive because it has super-linear convergence and it does not require calculations of the matrix of
partial derivatives. The various matrix-matrix and matrix-vector multiplications required by this method
can be easily carried out when MATLAB is used for implementation. Students may find this method
difficult to program if another programming package is used that does not support algebraic expressions
that contain matrices and matrix operations.

 In this example it is very important to verify that the mathematical model is correct and has a solution
before attaching to it the numerical solution technique, because the Broyden’s' method may not converge
to the solution even if the problem does have a solution. Some potential causes for no convergence will be
demonstrated in this example.

 The model equations, as entered into the POLYMATH nonlinear algebraic equation solver program
are shown in p. 188 of Cutlip and Shacham(1999). The problem can be solved with POLYMATH when
using the initial estimates shown in the problem statement without any difficulties. The POLYMATH
equations can be easily converted to a MATLAB function. We have used an automatic conversion routine
to do that but the conversion can be done easily by hand also. The MATLAB function that was obtained
by the conversion routine and edited in order to bring it to a more compact form is shown in Figure 5.

Table 1 - Successive Substitution Iterations for Example 1

Iteration. No. i vi Re fF vi+1 εi = |vi+1-vi| q
1 10 545193.3 0.003892 11.58185 1.581854 1559.383
2 11.58185 631434.9 0.003849 11.64971 0.067853 1806.055
3 11.64971 635134.2 0.003847 11.65229 0.002578 1816.636
4 11.65229 635274.8 0.003847 11.65238 9.75E-05 1817.038
5 11.65238 635280.1 0.003847 11.65239 3.69E-06 1817.053

962

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

0 2000 4000 6000 8000 10000

Pipe lenght (ft)

Ve
lo

ci
ty

 (f
t/s

)

D=4"
D=5"
D=6"
D=8"

Figure 4 - Flow Velocity versus Pipe Length and Diameter for Example 1

The main program for solving the pipeline network problems using Broyden's method is shown in

Figure 6. Note that only the computational commands are shown, the input output commands were
removed for brevity.

The Broyden's method, as implemented in Figure 6 diverges from the initial estimates specified in
Appendix B. One reason for that is the order of magnitude differences between the functions associated
with Equation (B-3) and those associated with Equation (B-4). The Equations (B-3) are comprised of
terms of the order of 0.1 while the Equations (B-4) are comprised of terms of the order of 106.

The equations can be rescaled by dividing the Equations (B-3) by the largest kij associated with the
particular equation. This rescaling was already carried out in the function shown in Figure 5. However,
Broyden’s method diverges even after rescaling the equations. To validate the solution technique an
initial estimate, closer to the solution is selected, based on the solution obtained by POLYMATH. From
this initial estimate Broyden's method converges to the correct solution shown in Table 2. But even when
starting from an initial estimate close to the solution the convergence of Broyden's method is non-
monotonic as can be seen in Figure 7. This Figure shows the logarithm of the error norm (defined in
Appendix B) as function of the iteration number. The error norm gets reduced for several iterations and
increases once again until, finally, gets close enough to the solution to achieve monotonic convergence.
Sophisticated nonlinear equation solver packages use a one-dimensional search in order to prevent the
increase of the error norm and this is a good example to demonstrate the need for such modification of the
solution algorithm.

963

Figure 5 - MATLAB Function Representing the Pipeline Network of Example 2

Figure 6 - MATLAB Main Program for Solving Example 2 Using Broyden's Method

4 DISCUSSION AND CONCLUSIONS
 The two examples presented here were used in the "Process Modeling and Numerical Methods
(PMNM)" course in the Chemical Engineering Department of the Ben-Gurion University. This course is a
one semester course given to 3rd year chemical, environmental and biochemical engineering students. In
addition to the use of realistic examples, made possible by the utilization of several software packages,
self-grading of both the homework assignments and the exams is also employed for enhancing learning
effectiveness.

964

 Table 2 - Initial Estimates and Solutions for Pipeline Network Flow-rates

Initial

Estimate Solution
q01

(m3/s) 0.1 0.098134
q12

(m3/s) 0.07 0.06482
q13

(m3/s) 0.04 0.033314
q24

(m3/s) 0.05 0.049372
q23

(m3/s) 0.02 0.015449
q34

(m3/s) 0.05 0.048763
q45(m3/s) 0.1 0.098135

-7

-6

-5

-4

-3

-2

-1

0
0 5 10 15 20 25

Iteration Number (k)

lo
ga

ri
th

m
 o

f ε
k

Figure 7 - Convergence Pattern of the Broyden's Method for Example 2

 For the homework assignments the students obtain the problem statement through the web site of the
course, with different numerical data for each student. After solving the problem they grade their solution
by entering some of the key results to the grading program that available also in the web-site. The self-
graded exams are similar to the homework assignments except that the exams are held in a computer
laboratory, under supervision, where the students get identified before taking the exam. More details on
self-grading of exams are provided by Shacham (1998).

 The success of the advances features presented in this paper can be demonstrated with reference to
the results of the final exam of the PMNM course which was given in the fall semester of 2003. Example
1, in a slightly modified form was presented as a final exam question. Using two software packages
(POLYMATH and MATLAB) for solution most of the students managed to solve correctly the problem
in two hours. In the past, when using only MATLAB (or a different programming language) very few of
the students was able to solve such a complex problem in such a short time. Thus the benefits of the use
of several software packages in a numerical methods course were clearly demonstrated.

965

REFERENCES
CUTLIP, M. B. AND SHACHAM, M. Problem Solving In Chemical Engineering with Numerical

Methods, Upper Saddle River, New-Jersey, Prentice-Hall, 1999.
 SHACHAM, M. 1998. “Computer Based Exams in Undergraduate Engineering Courses”, Comput. Appl.

Eng. Educ, 6(3), 201-209.
SHACHAM, M. , BRAUNER, N. AND CUTLIP, M. B. 2003., "An Exercise for Practicing Programming

in the ChE Curriculum--Calculation of Thermodynamic Properties Using the Redlich-Kwong
Equation of State.", Chem. Eng. Educ., 27(2), 148.

APPENDIX A

PROBLEM STATEMENT FOR EXAMPLE 1 - CALCULATION OF THE FLOW RATE IN A
PIPELINE

 The Figure below shows a pipeline which delivers water at constant temperature T = 60 °F from
point 1 where the pressure is p1 = 150 psig and the elevation is z1 = 0 ft to point 2 where the pressure is
atmospheric and the elevation is z2 = 300 ft.

(a) Calculate the flow rate q (in gal/min) for a pipeline with effective length of L = 1000 ft and made
of nominal 8-inch diameter schedule 40 commercial steel pipe. (Solution: v = 11.65 ft/s, q =
1817 gpm)

(b) Calculate the flow velocity and flow rate for pipelines with effective length of L = 500, 1000, …
10000 ft and made of nominal 4,5,6 and 8-inch schedule 40 commercial steel pipe. Use the
successive substitution method for solving the equations for the various cases and present the
results in tabular form. Prepare plots of flow velocity versus D and L and flow rate versus D and
L.

Equations and numerical data
 The general mechanical energy balance on an incompressible liquid that applicable to this case is the
following

02
2
1 2

2 =+
∆

+∆+−
D
LvfPg

zgv Fc

ρ
 (A-1)

where v is the flow velocity in ft/s, g is the acceleration of gravity given by g = 32.174 ft/s2, ∆z = z2-z1 is
the difference in elevation (ft), gc is a conversion factor (in English units gc =32.174 ft·lbm/lbf·s2), ∆P =
P2-P1 is the difference in pressure lbm/ft2), ρ is the fluid density (for water at T = 60 °F, ρ = 62.3 lbm/ft3),
fF is the Fanning friction factor, L is the length of the pipe (ft) and D is the inside diameter of the pipe (ft).
To use the Successive Substitution method equation (A-1) should be rewritten:






 −







 ∆
+∆= D

fPg
zgv Fc 25.0

ρ
 (A-2)

 The equation used for calculating the Fanning friction factor depends on the flow regime. The flow
regime is characterized by the Reynold's number Re. The Reynold's number is a dimensionless number

966

Re= vρD/µ where µ is the viscosity (for water at T = 60 °F, µ = 0.76×10-3 lbm/ft·s). For laminar flow (Re <
2100) the Fanning friction factor can be calculated from the equation

Re16=Ff (A-3)

 For turbulent flow (Re > 2100) the Shacham4 equation can be used.
2

5.14
7.3

/log02.5
7.3

/log161






















 +−=

Re
D

Re
Df F

εε (A-4)

where ε/D is the surface roughness of the pipe (ε = 0.00015 ft for commercial steel pipes).
 The flow velocity in the pipeline can be converted to flow rate by multiplying it by the cross section
are of the pipe, thus q = vπD2/4 (ft3/s). The inside diameter (D) of commercial steel pipes can be found,
for example, in Table D-5 of the book by Cutlip and Shacham (1999). The iteration function of the
successive substitution method for calculation of the flow velocity is

K,1,0)(1 ==+ ivFv ii (A-5)

where i is the iteration number, F is the function in the right side of Equation (A-2) and v0 is an initial
estimate for the flow velocity (use v0 = 10 ft/s). Equation (A-6) provides an error estimate at iteration i:

||ˆ 1+−= iii vvε (A-6)

The iterations can be stopped when . 510ˆ −<iε
APPENDIX B

PROBLEM STATEMENT FOR EXAMPLE 2 - FLOW DISTRIBUTION IN A PIPELINE
NETWORK

 Water at 25 °C is flowing in the pipeline network given in Figure B-1. The pressure at the exit of the
pump is 15 bar (15 ×105 Pa) above atmospheric, and the water is discharged at atmospheric pressure at
the end of the pipeline. All the pipes are 6-inch schedule 40 steel with an inside diameter of 0.154 m. The
equivalent lengths of the pipes connecting different nodes are the following: L01 = 100 m, L12 = L23 = L45
= 300 m, and L13 = L24 = L34 = 1200 m.

a) Use POLYMATH to calculate all the flow rates and pressures at nodes 1, 2, 3, and 4 for the

pipeline network shown in the Figure. The Fanning friction factor can be assumed to be
constant at fF = 0.005 for all pipelines. The initial estimates for all the volumetric flow rates
can be set at 0.1 m3/s.

b) Use Broyden's Quasi-Newton method (programmed with MATLAB) to solve the system of
equations obtained in part (a).

4 Shacham, M. Ind. Eng. Chem. Fund., 19, 228-229(1980)

967

Equations and data
 For the solution of this problem it is convenient to express the pressure drop from node i to node j as

2)(ijijij qkP =∆ (B-1)

where is the pressure drop and qijP∆ ij is the volumetric flow rate between nodes i and j. The kij terms in
Equation (B-1) are related to the Fanning friction factors and average fluid velocities.

() ()5232 DLfk ijFij πρ= (B-2)

 There are two relationships that govern the steady-state flow rate in pipeline networks. First, the
algebraic sum of the flow rates at each node must be zero. Second, the algebraic sum of all pressure
drops in a closed loop must be zero.

The flow rate summation equations for nodes 1, 2, 3 and 4 are the following:

0;0
0;0

453424341323

232412131201

=−+=−+
=−−=−−

qqqqqq
qqqqqq

 (B-3)

The pressure drop summation equations on Loops I, II and III (see Figure B-1) are respectively

0;0
0

243423122313

45241201

=∆−∆+∆=∆−∆−∆
=∆+∆+∆+∆+∆

PPPPPP
PPPPP PUMP (B-4)

The pressure drops can be expressed as functions of qij using Equation (B-1). This substitution leads to
seven equations with seven unknown flow rates. The iteration function of Broyden's quasi-Newton
method5 for solving systems of nonlinear algebraic equations is

K,1,0)(1 =−=+ kkkkk xfHxx (B-5)

where x is an n vector of variables, f is an n vectors of functions and Hk is the kth estimate for the inversed
Jacobian matrix (matrix of partial derivatives). The identity matrix I is often used as initial estimate for
the inversed Jacobian matrix H0. This matrix is updated in iteration k using the equation

kk
T
k

k
T
kkkk

kk yHp
HppyH

HH
.)(

. 1
−

−=+ (B-6)

where and . kkk xxp −= +1)()(1 kkk xfxfy −= +

The Euclidean norm of pk can be used as error estimate. Thus ||||~
kk p=ε . The iterations can be stopped

when . 510ˆ −<kε

968

5 Broyden, C. G. Mathematics of Computation, 19, 577-593(1965)

