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ABSTRACT: A major challenge in teaching numerical methods to engineering students is to provide 
stimulating student motivation. The examples that are provided in most numerical methods textbooks 
typically do not establish the necessary content connections with the engineering student’s engineering 
major. In order to increase student motivation, they need to be shown practical examples from their 
particular fields that are best solved by using numerical methods. The dilemma here is that practical 
examples can be rather complex, and their coding and debugging may take too long, thus reducing the 
time available for learning the subject matter.  

In this paper we demonstrate, using two practical examples from the fluid mechanics field, the 
several benefits of the use of a number of software packages in teaching numerical methods. In the two 
examples the POLYMATH package, which is a user-friendly numerical problem-solving package, is used 
for the preparation, coding and debugging of the mathematical model. Once a correct, verified solution 
has been obtained for a particular model a different software package, more appropriate for coding the 
numerical solution algorithm can be used. In the first example Excel is used for programming the 
"successive substitution" method. In the second example MATLAB is used for programming Broyden's 
"quasi-Newton" algorithm. It is shown that the separation between the preparation and the debugging of 
the mathematical model and the numerical solution can alleviate considerably the programming of the 
solution algorithm. It can also help to identify weak points of the basic algorithm such as the need to 
rescale the functions and variables, start the iterations from points close to the solution or carry out one 
dimensional search for minimum. 

1 INTRODUCTION 
 A major challenge in teaching numerical methods to engineering students is to provide stimulating 

student motivation. The examples that are provided in most numerical methods textbooks typically do not 
establish the necessary content connections with the engineering student’s engineering major. In order to 
increase student motivation, they need to be shown practical examples from their particular fields that are 
best solved by using numerical methods. The dilemma here is that practical examples can be rather 
complex, and their coding and debugging may take too long, thus reducing the time available for learning 
the subject matter. The approach that we have developed is the use of several software packages in the 
numerical analysis course. The POLYMATH1 package, which is a user-friendly numerical problem-
solving package, is used for preparing, coding and debugging the mathematical model of the problem. 
The latest version of this software automatically outputs the equations in the format acceptable to a 
spreadsheet program, Excel2. The POLYMATH model can be easily converted to a MATLAB3 function, 

                                                 
1 POLYMATH is copyrighted by M. Shacham, M. B. Cutlip and M. Elly (http://www.polymath-software.com/). 
2 Excel is a trademark of Microsoft Corporation (http://www.microsoft.com) 
3 MATLAB is a trademark of The MathWorks, Inc. (http://www.mathworks.com). 
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also (see for example Shacham et al, 2003). The students can concentrate on preparing the MATLAB 
code or the Excel spreadsheet for the numerical solution algorithms using the mathematical model of the 
problem which has been already verified. This enables the use of realistic examples, thus increasing the 
students' motivation without spending too much time in the technical details of the model preparation.  

 In the following two examples from the fluid mechanics field are used to demonstrate this new 
approach and its potential benefits. 

2 EXAMPLE 1 - CALCULATION OF THE FLOW RATE IN A PIPELINE USING 
SUCCESSIVE SUBSTITUTION 
 This example is based on Problem 5.10 presented by Cutlip and Shacham (1999). The detailed 

problem statement is shown in Appendix A. The problem involves calculation of flow velocity and flow 
rate in a pipeline configuration for a large number of combinations of pipe lengths and diameters. The 
results should be presented in tabular and graphical forms. The solution for one set of pipe diameter and 
length values involves solution of a nonlinear equation, the general mechanical energy balance on an 
incompressible fluid, where the friction factor is function of the Reynold's number (thus the flow 
velocity). The successive substitution method has long been used for solving this type of problems (even 
when graphical solution techniques were used), and it is known that this technique converges very fast for 
flow velocity calculations. The successive substitution method can be conveniently programmed with 
Excel, but the direct input of the model equations into Excel can be a tedious and error-prone process. A 
better approach for students is to first enter the equations into POLYMATH that requires minimal 
changes in the naming of the variables, solve the equations for one set of parameter values, and then 
compare the results with the solution provided in the problem statement. After this is completed, an 
option within POLYMATH can be used to convert the set of equations into a spreadsheet within Excel 
that can immediately be used to also obtain a problem solution. 

 

 
Figure 1 - POLYMATH Equation Entry for Example 1 

 

 The equations, as entered into the POLYMATH program, are shown in Figure 1. Students find the 
"user friendly" features of POLYMATH very helpful while entering the equations: The notation used in 
the equation entry is almost the same as in the problem definition (except that no Greek characters can be 
used). POLYMATH issues warnings for undefined variables so that errors such as using the letter o in the 
variable name (like in eoD) in one equation and the number 0 in another equation can be easily detected. 
The needed equations can be entered in the same order as they appear in the problem definition even if 
the calculation order must be different since POLYMATH reorders the equations when the calculations 
are made.  For example, the necessary calculation for the friction factor, fF, first involves ε/D and then 
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Reynolds number, Re. However POLYMATH allows direct entry of the equations in the same order as 
they are defined in the problem statement. 

 Common mistakes in entering the model equations typically involve inconsistency in the units used 
(i.e. inches instead of feet), wrong sign of the pressure or elevation difference, and inappropriate use of 
parenthesis in Equations (A-1) and (A-4). POLYMATH enables much easier detection of errors in the 
model equations because the model debugging stage is clearly separated from the numerical solution 
stage. 

 

 
Figure 2 - POLYMATH Equations Converted to Excel Formulas for Example 1 

 

 
Figure 3 - Excel Worksheet with Numerical Results and Documentation for Example 1 

 

 After the correct solution as given in the problem statement is obtained, the model equation set can 
be converted to an Excel worksheet using a single command within POLYMATH. Part of the Excel 
worksheet generated is shown in Figure 2 where the variable cell calculations are indicated.  

 The variable names are translated to cell addresses, intrinsic function names are changed as 
necessary, and the syntax of the if statement is changed. The equations are rearranged in a form that 
appropriate for solving the equation using the goal seek or solver tools available within Excel. The 
complete worksheet with the solution obtained using goal seek is shown in Figure 3.  

 The numerical results are identical to those obtained by POLYMATH, and thus the correctness of the 
Excel solution has been verified. The variable names in column C, the POLYMATH equations in column 
E, and the variable descriptions in column F provide complete documentation for the Excel formulas in 
column C.  
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 The successive substitution method can be implemented by revising the equations that are functions 
of the unknown flow velocity v and adding Equation (A-6) for estimating the error in the current value of 
vi as shown below. 

 

 
 

 Arranging the variables in consecutive columns, copying and pasting them in consecutive rows and 
substituting vi+1 in the cell that contains vi starting iteration No. 1 yields the desired solution as obtained 
by the successive substitution method (see Table 1). 

 After the correct solution has been obtained for one set of pipe length and diameter values the "Two 
Input Table" option of Excel can be conveniently used for carrying out all the calculations that required in 
part (b) of the problem statement in Appendix A. The plot of flow velocity for all combinations of pipe 
length and diameter is shown in Figure 4. 

3 EXAMPLE 2 - FLOW DISTRIBUTION IN A PIPELINE NETWORK SOLVED BY 
BROYDEN’S METHOD 
 This example is based on Problem 5.11 presented by Cutlip and Shacham(1999). The detailed 

problem statement is shown in Appendix B. The problem involves calculation of flow rates and pressure 
drops in a pipeline network that includes seven interconnected pipe segments. The problem can be 
brought into a form of seven algebraic equations (where three of them are nonlinear) with seven unknown 
pipe-segment flow rates. The use of Broyden's Quasi-Newton method for this type of problems is 
attractive because it has super-linear convergence and it does not require calculations of the matrix of 
partial derivatives. The various matrix-matrix and matrix-vector multiplications required by this method 
can be easily carried out when MATLAB is used for implementation. Students may find this method 
difficult to program if another programming package is used that does not support algebraic expressions 
that contain matrices and matrix operations. 

 In this example it is very important to verify that the mathematical model is correct and has a solution 
before attaching to it the numerical solution technique, because the Broyden’s' method may not converge 
to the solution even if the problem does have a solution. Some potential causes for no convergence will be 
demonstrated in this example. 

 The model equations, as entered into the POLYMATH nonlinear algebraic equation solver program 
are shown in p. 188 of Cutlip and Shacham(1999). The problem can be solved with POLYMATH when 
using the initial estimates shown in the problem statement without any difficulties. The POLYMATH 
equations can be easily converted to a MATLAB function. We have used an automatic conversion routine 
to do that but the conversion can be done easily by hand also. The MATLAB function that was obtained 
by the conversion routine and edited in order to bring it to a more compact form is shown in Figure 5. 

 
Table 1 - Successive Substitution Iterations for Example 1  
 
 

Iteration. No. i vi Re fF vi+1 εi = |vi+1-vi| q 
1 10 545193.3 0.003892 11.58185 1.581854 1559.383 
2 11.58185 631434.9 0.003849 11.64971 0.067853 1806.055 
3 11.64971 635134.2 0.003847 11.65229 0.002578 1816.636 
4 11.65229 635274.8 0.003847 11.65238 9.75E-05 1817.038 
5 11.65238 635280.1 0.003847 11.65239 3.69E-06 1817.053 
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Figure 4 - Flow Velocity versus Pipe Length and Diameter for Example 1 

 
The main program for solving the pipeline network problems using Broyden's method is shown in 

Figure 6. Note that only the computational commands are shown, the input output commands were 
removed for brevity. 

The Broyden's method, as implemented in Figure 6 diverges from the initial estimates specified in 
Appendix B. One reason for that is the order of magnitude differences between the functions associated 
with Equation (B-3) and those associated with Equation (B-4). The Equations (B-3) are comprised of 
terms of the order of 0.1 while the Equations (B-4) are comprised of terms of the order of 106. 

The equations can be rescaled by dividing the Equations (B-3) by the largest kij associated with the 
particular equation. This rescaling was already carried out in the function shown in Figure 5. However, 
Broyden’s method diverges even after rescaling the equations. To validate the solution technique an 
initial estimate, closer to the solution is selected, based on the solution obtained by POLYMATH. From 
this initial estimate Broyden's method converges to the correct solution shown in Table 2. But even when 
starting from an initial estimate close to the solution the convergence of Broyden's method is non-
monotonic as can be seen in Figure 7. This Figure shows the logarithm of the error norm (defined in 
Appendix B) as function of the iteration number. The error norm gets reduced for several iterations and 
increases once again until, finally, gets close enough to the solution to achieve monotonic convergence. 
Sophisticated nonlinear equation solver packages use a one-dimensional search in order to prevent the 
increase of the error norm and this is a good example to demonstrate the need for such modification of the 
solution algorithm.    
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Figure 5 - MATLAB Function Representing the Pipeline Network of Example 2 

 

 
Figure 6 - MATLAB Main Program for Solving Example 2 Using Broyden's Method 

4 DISCUSSION AND CONCLUSIONS 
 The two examples presented here were used in the "Process Modeling and Numerical Methods 
(PMNM)" course in the Chemical Engineering Department of the Ben-Gurion University. This course is a 
one semester course given to 3rd year chemical, environmental and biochemical engineering students. In 
addition to the use of realistic examples, made possible by the utilization of several software packages, 
self-grading of both the homework assignments and the exams is also employed for enhancing learning 
effectiveness.  
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    Table 2 - Initial Estimates and Solutions for Pipeline Network Flow-rates  

 
Initial 

Estimate Solution 
q01 

(m3/s) 0.1 0.098134
q12 

(m3/s) 0.07 0.06482 
q13 

(m3/s) 0.04 0.033314
q24 

(m3/s) 0.05 0.049372
q23 

(m3/s) 0.02 0.015449
q34 

(m3/s) 0.05 0.048763
q45(m3/s) 0.1 0.098135
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Figure 7 - Convergence Pattern of the Broyden's Method for Example 2 

 For the homework assignments the students obtain the problem statement through the web site of the 
course, with different numerical data for each student. After solving the problem they grade their solution 
by entering some of the key results to the grading program that available also in the web-site. The self-
graded exams are similar to the homework assignments except that the exams are held in a computer 
laboratory, under supervision, where the students get identified before taking the exam. More details on 
self-grading of exams are provided by Shacham (1998). 

 The success of the advances features presented in this paper can be demonstrated with reference to 
the results of the final exam of the PMNM course which was given in the fall semester of 2003. Example 
1, in a slightly modified form was presented as a final exam question. Using two software packages 
(POLYMATH and MATLAB) for solution most of the students managed to solve correctly the problem 
in two hours.  In the past, when using only MATLAB (or a different programming language) very few of 
the students was able to solve such a complex problem in such a short time. Thus the benefits of the use 
of several software packages in a numerical methods course were clearly demonstrated.  

965 



REFERENCES 
CUTLIP, M. B. AND SHACHAM, M. Problem Solving In Chemical Engineering with Numerical 

Methods, Upper Saddle River, New-Jersey, Prentice-Hall, 1999. 
 SHACHAM, M. 1998. “Computer Based Exams in Undergraduate Engineering Courses”, Comput. Appl. 

Eng. Educ, 6(3), 201-209.  
SHACHAM, M. , BRAUNER, N. AND CUTLIP, M. B. 2003., "An Exercise for Practicing Programming 

in the ChE Curriculum--Calculation of Thermodynamic Properties Using the Redlich-Kwong 
Equation of State.", Chem. Eng. Educ., 27(2), 148. 

 
APPENDIX A 

PROBLEM STATEMENT FOR EXAMPLE 1 - CALCULATION OF THE FLOW RATE IN A 
PIPELINE 

 The Figure below shows a pipeline which delivers water at constant temperature T = 60 °F from 
point 1 where the pressure is p1 = 150 psig and the elevation is z1 = 0 ft to point 2 where the pressure is 
atmospheric and the elevation is z2 = 300 ft.  

 

(a) Calculate the flow rate q (in gal/min) for a pipeline with effective length of L = 1000 ft and made 
of nominal 8-inch diameter schedule 40 commercial steel pipe. (Solution: v =  11.65 ft/s, q = 
1817 gpm) 

(b) Calculate the flow velocity and flow rate for pipelines with effective length of L = 500, 1000, … 
10000 ft and made of nominal 4,5,6 and 8-inch schedule 40 commercial steel pipe. Use the 
successive substitution method for solving the equations for the various cases and present the 
results in tabular form. Prepare plots of flow velocity versus D and L and flow rate versus D and 
L.  

Equations and numerical data 
 The general mechanical energy balance on an incompressible liquid that applicable to this case is the 
following 

02
2
1 2

2 =+
∆

+∆+−
D
LvfPg

zgv Fc

ρ
                       (A-1) 

where v is the flow velocity in ft/s, g is the acceleration of gravity given by g = 32.174 ft/s2, ∆z = z2-z1 is 
the difference in elevation (ft), gc is a conversion factor (in English units gc =32.174 ft·lbm/lbf·s2), ∆P = 
P2-P1 is the difference in pressure lbm/ft2), ρ is the fluid density (for water at T = 60 °F,  ρ = 62.3 lbm/ft3 ), 
fF is the Fanning friction factor, L is the length of the pipe (ft) and D is the inside diameter of the pipe (ft). 
To use the Successive Substitution method equation (A-1) should be rewritten: 






 −







 ∆
+∆= D

fPg
zgv Fc 25.0

ρ
                       (A-2) 

 The equation used for calculating the Fanning friction factor depends on the flow regime. The flow 
regime is characterized by the Reynold's number Re. The Reynold's number is a dimensionless number 
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Re= vρD/µ where µ is the viscosity (for water at T = 60 °F, µ = 0.76×10-3 lbm/ft·s). For laminar flow (Re < 
2100) the Fanning friction factor can be calculated from the equation 

Re16=Ff                       (A-3) 

 For turbulent flow (Re > 2100) the Shacham4 equation can be used. 
2
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where ε/D is the surface roughness of the pipe (ε = 0.00015 ft for commercial steel pipes). 
 The flow velocity in the pipeline can be converted to flow rate by multiplying it by the cross section 
are of the pipe, thus q = vπD2/4 (ft3/s). The inside diameter (D) of commercial steel pipes can be found, 
for example, in Table D-5 of the book by Cutlip and Shacham (1999). The iteration function of the 
successive substitution method for calculation of the flow velocity is 

K,1,0)(1 ==+ ivFv ii                                (A-5) 

where i is the iteration number, F is the function in the right side of Equation (A-2) and v0 is an initial 
estimate for the flow velocity (use v0 = 10 ft/s ). Equation (A-6) provides an error estimate at iteration i: 

||ˆ 1+−= iii vvε                                                   (A-6) 

The iterations can be stopped when . 510ˆ −<iε
APPENDIX B 

PROBLEM STATEMENT FOR EXAMPLE 2 - FLOW DISTRIBUTION IN A PIPELINE 
NETWORK 

 Water at 25 °C is flowing in the pipeline network given in Figure B-1. The pressure at the exit of the 
pump is 15 bar (15 ×105 Pa) above atmospheric, and the water is discharged at atmospheric pressure at 
the end of the pipeline. All the pipes are 6-inch schedule 40 steel with an inside diameter of  0.154 m. The 
equivalent lengths of the pipes connecting different nodes are the following: L01 = 100 m, L12 = L23 = L45 
= 300 m, and L13 = L24 = L34 = 1200 m. 

 
a) Use POLYMATH to calculate all the flow rates and pressures at nodes 1, 2, 3, and 4 for the 

pipeline network shown in the Figure. The Fanning friction factor can be assumed to be 
constant at fF = 0.005 for all pipelines. The initial estimates for all the volumetric flow rates 
can be set at 0.1 m3/s. 

b) Use Broyden's Quasi-Newton method (programmed with MATLAB) to solve the system of 
equations obtained in part (a). 

                                                 
4 Shacham, M. Ind. Eng. Chem. Fund., 19, 228-229(1980) 
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Equations and data 
 For the solution of this problem it is convenient to express the pressure drop from node i to node j as 

2)( ijijij qkP =∆                                                        (B-1) 

where  is the pressure drop and qijP∆ ij is the volumetric flow rate between nodes i and j. The kij terms in 
Equation (B-1) are related to the Fanning friction factors and average fluid velocities. 

( ) ( )5232 DLfk ijFij πρ=                                                   (B-2) 

 There are two relationships that govern the steady-state flow rate in pipeline networks. First, the 
algebraic sum of the flow rates at each node must be zero. Second, the algebraic sum of all pressure 
drops in a closed loop must be zero.  

The flow rate summation equations for nodes 1, 2, 3 and 4 are the following: 

0;0
0;0

453424341323

232412131201

=−+=−+
=−−=−−

qqqqqq
qqqqqq

                                                              (B-3) 

The pressure drop summation equations on Loops I, II and III (see Figure B-1) are respectively  

0;0
0

243423122313

45241201

=∆−∆+∆=∆−∆−∆
=∆+∆+∆+∆+∆

PPPPPP
PPPPP PUMP                                                     (B-4) 

The pressure drops can be expressed as functions of qij using Equation (B-1). This substitution leads to 
seven equations with seven unknown flow rates. The iteration function of Broyden's quasi-Newton 
method5 for solving systems of nonlinear algebraic equations is 

K,1,0)(1 =−=+ kkkkk xfHxx                                         (B-5) 

where x is an n vector of variables, f is an n vectors of functions and Hk is the kth estimate for the inversed 
Jacobian matrix (matrix of partial derivatives). The identity matrix I is often used as initial estimate for 
the inversed Jacobian matrix H0. This matrix is updated in iteration k using the equation  

kk
T
k

k
T
kkkk

kk yHp
HppyH

HH
.)(

. 1
−

−=+                                                           (B-6) 

where   and . kkk xxp −= +1 )()( 1 kkk xfxfy −= +

The Euclidean norm of  pk can be used as error estimate. Thus ||||~
kk p=ε . The iterations can be stopped 

when . 510ˆ −<kε
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5 Broyden, C. G. Mathematics of Computation, 19, 577-593(1965) 


