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ABSTRACT: Chemical instrumentation based on FT is well known by experimental scientists and 
technicians; however, their mathematical principles are poorly understood. Unfortunately, the black-box 
design of many commercial instruments makes this double aim difficult to implement. Well designed 
computer simulations are one way of providing the background of this experience. Mathcad is one of the 
four most popular computational packages used in academic and industrial environments. Mathcad 
combines some of the best features from spreadsheets (like MS Excel) and symbolic math programs.. 
Mathcad contains functions for performing the discrete Fourier transform and its inverse. The function 
FFT returns the Fourier transform of a 2N element vector of real data representing measurements at 
regular intervals in the time domain. The function IFFT returns the inverse Fourier transform of a vector 
of real data representing values in the frequency domain. 

This paper describes two applications of the Fourier transform for data manipulation in chemical 
instrumentation by means of the Mathcad symbolic computational package, (version 2000 Professional 
for Windows on a PC-compatible). Both applications have similar aims, to improve the quality of 
spectroscopic or chromatographic signals It  explores the advantages of the Fourier transform and 
digital filtering to smooth a noisy signal with a improvement of the signal-to-noise ratio of 45. The 
simulation of the convolution is carried out; the effect  of the bandwidth of the filter function (slit of 
grating in spectrometry and dead volume in chromatography) and the effect of phase shift among the 
analytical signal and the filter signal are described. Deconvolution allows to recover the starting signal 
corresponding to a laser-excited fluorescence decay. 
 

1 INTRODUCTION  
The Fourier Transform (FT) is basically a mathematical tool which recognizes that there are two 

ways of describing many physical processes: One way treats the process as serial, either in time or in 
space; the alternative way of describing a physical process is to represent it in function of the frequency 
(time-inverse) or spatial frequency (space-inverse). Therefore, the FT is a mathematical technique that 
separates a time-domain signal into its corresponding frequency components. 

In the past, the FT process was tedious, it involved transforming a continuous distribution of data and 
it was only used when no substitute could be found. Nowadays, the most instrumental data are discrete 
(digital), i.e, sampled at regular time intervals. Thus the availability of computers and of the so-called 
Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT) (descriptive name of computational 
algorithms for rapidly evaluating the DTF), have allowed the FT to be easily accessible and result in a 
great development of the instrumentation. Theory of Fourier transform can be found in specialized 
monographs (1-4). 

The applications of FT in chemical instrumentation are manifold and it seems, upon examining the 
literature, that there are few techniques to which FT has not been introduced at one stage or another, 
either in data collection process or in data handling. General applications in different topics of chemistry 
have been reported (5-7). Specific examples can be found in X ray crystallography (8),  infrared and 
Raman spectroscopy (9-13), infrared imaging microscopy (14), mass spectrometry (15-16), nuclear 
magnetic resonance, NMR (17), and electrochemical techniques (18). 
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Chemical instrumentation based on FT is well known by experimental scientists and technicians; 
however, their mathematical principles are poorly understood. Ideally, an instrument should be known 
both in theory and operation. Unfortunately, the black-box design of many commercial instruments makes 
this double aim difficult to implement.  

Well designed computer simulations are one way of providing the background of this experience. 
Mathcad is one of the four most popular computational packages used in academic and industrial 
environments (19). The other three programs are Matlab, Maple and Mathematica. However, Mathcad 
combines some of the best features from spreadsheets (like MS Excel) and symbolic math programs. The 
ease with which Mathcad lets type formulae, data and text and its capability for drawing graphs, it makes 
Mathcad a powerful tool to develop a variety of instructional programs. 

The use of Mathcad in chemistry curriculum has been discussed elsewhere (20-24) and in the last 
years have been published several monographs about the application of Mathcad in several chemistry and 
physics topics (25-26). In a previous paper we described the use of Mathcad for the simulation of a lock-
in amplifier (20). In this article, we report two applications of Fourier transform by means of the program 
Mathcad (version 2000 Professional) for Windows on a PC-compatible:   1) smooth a noisy signal by 
Fourier transform and filtering, and 2) the Fourier self convolution and deconvolution of signals. Both 
applications have similar aims, to improve the quality of spectroscopic or chromatographic signals. 

 

2 FUNDAMENTALS  
The Direct Fourier transform of a function f(t) is given by: 

 

∫
∞

∞−

−= dtetfF ti ...)()( ωω            (1) 

Analogously, the inverse Fourier transform of a function F(ω ) is given by: 
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where ω is the angular frequency, ω = 2πf, and i is the imaginary unit. 
Computation of Fourier transforms in interval [-∞, ∞] is difficult and hence the discrete Fourier 

transform is used to convert a digitised waveform from the time domain to the frequency domain. The 
DFT is given as  
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where N is the total number of points in the digitised waveform, (N is a power of 2, e.g. 29), n is the 

index of the waveform sampled in the time domain ( n = 0, 1,…, N-1), k is the index of the calculated 
frequency components ( k = 0,1, …, N/2), ∆f is the frequency interval, ∆t is the sampling interval in the 
time domain, f(n∆t) is the time-domain representation of the waveform to be Fourier transform, and 
F(k∆f) is the frequency-domain representation of the sampled waveform. 

Mathcad contains functions for performing the discrete Fourier transform and its inverse. The 
function FFT returns the Fourier transform of a 2N element vector of real data representing measurements 
at regular intervals in the time domain. The function IFFT returns the inverse Fourier transform of a 
vector of real data representing values in the frequency domain. 
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3 RESULTS AND DISCUSSION 

(10)Input noisy signalSNoisen Signaln Noisen⋅:=

(9)Random noiseNoisen 1
1
2

rnd 1( )⋅+ 0.5−





p⋅:=

(8)Noise level p 1:=

A similar treatment can be used to obtain the parameters  and the equations for a noisy 
signal. 

Figure 1 shows a  Gaussian signal with three  peaks centered  at times of 30, 50 and 12
and  intensities of 3, 2 and 1.5 respectively.  This signal  can   be representative of  
chromatografic or spectroscopic data.
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Figure 1:Signal of three Gaussians
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(5)Total range of timet 200:=

(4)Data span and range variablen 0 N 1−..:=N 29:=

Consider a  Gaussian  signal  represented  by  the following   parameters  and equation
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Inverse Fourier transform of signalZ IFFT Y( ):= (17)

(16)Fourier transform of the signalY FFT Signal( ):=

Frequencyfk
k

tN 1−
:= (15)

k 0
N
2

..:= (14)Range variable of the transform

To obtain the Fourier transform and the inverse Fourier transform we use the   followin
parameters and equations:

(13)SNRsignal
noise

20.18=

(12)noise 0.144=noise stdev Noise( ):=

(11)signal 2.91=signal max SNoise( ):=

Figure 2 shows the input noisy signal. The random noise effect can be displayed by 
modifying the value of the variable p.  The signal-to-noise ratio (SNR),  can be estimat
as   the  ratio between  the   maximum  value  of  the  signal  and   the standard deviatio
noise. Thus, we obtain
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Figure 2: Noisy signal 
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Figure 3: Fourier transform of signal
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Figure 4: Inverse Fourier Transform
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Figure 3 shows that the Fourier transform of signal  displays frequencies of up to abo
= 0.1. We can see  that  by means of   the inverse Fourier transform, Figure 4, the init
signal is recovered.

Since the most of the spectrometric and chromatographic detectors measure the inten
and, integrating over time, it uses the power spectrum, square  of the Fourier  transfor
which  is proportional  to   signal intensity.   In order  to achieve a better inspection it
more convenient to use the semilogarithm plot  of the power spectrum. Thus,  Figure 
shows a sharp variation of log (Y2) up to frecuencies about  0.1.  
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Figure 5: Logarithm of power spectrum
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A similar treatment can be used to obtain the Fourier transform and the inverse Fourier
transform  for  the noisy  signal.  Results are shown in Figures  6  and 7 respectively.

F FFT SNoise( ):= Fourier transform of the noisy signal (18)

W IFFT F( ):= Inverse transform Fourier of noisy signal (19)

0 0.5 1

0

0.2

Figure 6: FT of the noisy signal
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Figure 7: Inverse FT of the noisy signal
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Figure 8:Power spectrum of signals
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Figure 8 shows the power spectrum of both for the initial signal and the same signal w
noise.   Figure  9  illustrates that  upon  applying a  cut-off filter of low-pass  that allow
passing  only the  low  frequencies   contained  in   the transform Fourier  signal, e.g  
approximately  f < 0.1 , followed by the inverse Fourier transform, will  remove  the  
noise  from the signal.  The filter function,   the filtered Fourier transform and its inve
are defined as follows:  

Filter k( ) fk 0>( ) fk⋅ 0.1< := Low-pass filter (20)

Tk Fk Filter k( )⋅:=  Filtered Fourier transform (21)

U IFFT T( ):= Inverse Fourier transform of filtered signal (22)
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Figure 9:Filtered Fourier transform
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signalfilt
noisefilt

929.173= (26)SNR in filtered signal

(25)Standard deviation of noisenoisefilt 2.548 10 3−×=noisefilt stdev V( ):=

(24)Maximum value of Usignalfilt 2.368=signalfilt max U( ):=

(23)Range and new variable  
for the time 

Vx Un:=x 440 460..:=

The performance of the  Fourier transform  and  filtering  in  reducing baseline noise 
 can be estimated from  the standard deviation over a  range where  the baseline 
only  is  involved, Table 1, ( e.g,  times in the range 170-180 ,  Figure 10). So we 
take the following range  and variable :  

The Fourier transform can be much more specific, picking out or reject a single 
frequency or specific set  of frequencies.  So,  it is possible  to tune a particular 
frequency,   via lock-in   amplifier (20 ),  or  selectively   remove specific  noise 
(60,120,180 Hz)  leaving  the  frequencies  of signal  unaffected.

Figure 10 shows that the inverse Fourier transform of the  filtered signal , Un,  is very
similar to the starting signal, Figure 1. However, there is also noise at the lower frecu
components  which  is  not eliminated  and  cause a  litle  distortion of the signal.  If w
used a  low-pass filter of  cut-off  frequecy lower and near to zero,  then that would 
remove  the frequencies of  the  signal and  the distorsion increases, being the result  m
negative. So the filter function should be choosen so that removes most of  the noise  
not distorting the shapes of the analitical signal of interest.   
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Table 1.- Filtered signal and time in baseline 

Ux
-7.946·10    -4

1.378·10    -3

3.481·10    -3

5.394·10    -3

7.007·10    -3

8.226·10    -3

8.978·10    -3

9.219·10    -3

8.932·10    -3

8.13·10    -3

6.857·10    -3

5.182·10    -3

3.2·10    -3

1.022·10    -3

-1.229·10    -3

-3.423·10    -3

-5.434·10    -3

-7.147·10    -3

-8.46·10    -3

-9.296·10    -3

-9.602·10    -3

= tx
171.875
172.266

172.656

173.047

173.438

173.828

174.219

174.609

175

175.391

175.781

176.172

176.563

176.953

177.344

177.734

178.125

178.516

178.906

179.297

179.688

=

We can observe that the Fourier transform  and filtering increases the SNR by a fact
of about 45, from 20 (eq.13) to 930 (eq.26 ). Commercial instruments are  equipped 
with   Fourier  transform  and  filtering  functions  that  reject  a specific set of 
frecuencies, selecttively  remove noise,  while leaving the other frequencies  unaffec 

 

4 CONCLUSIONS 
 This document presents two applications of the Fourier transform in chemical instrumentation by 
means of the solver MATHCAD. It describes the smoothing of a noisy signal and the simulation of the 
convolution of signals. The effect of the bandwidth of the filter function and the effect of the phase shift 
are investigated. Deconvolution of a laser-excited fluorescence signal is also described. 
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