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ABSTRACT: Much of effort is devoted by students to the numerical or approximated analytical solutions 
of the complex problems in which the mathematical model is integrated by coupled differential nonlineal 
transient equations. In particular, difficult convergence problems arising from numerical methods are 
inevitable. The use of network analogy, which requires very few devices and rules for circuit design, has 
been demonstrated to be very useful as regards the accuracy of its solutions, which are obtained by an 
appropriate educational software. All the mathematical requirements needed for the convergence are 
realized by the mentioned software, not by the programmer. Applications to the Lorenz and Loka-
Volterra and problems are presented. 
 

1 INTRODUCTION 

An important number of natural problems (physical, chemical and biological) are formulated by a 
mathematical model that contains coupled (conjugated) differential equations, whose solution is 
complicated for most of students of engineering. Conjugated problems are stated by a system of equations 
in which dependent variables appear in more than one. Such occurs, for example, in chemical diffusion-
reaction systems, where the chemical components are continuously combining and simultaneously 
diffusing in the reactor, or in the transport of viscous fluids, where the temperature depends on the 
velocity gradients, or in ecological models, where the biological species interact very closely. 
 

The solution to this kind of problem is by no means like trivial since, in general, no analytical 
(mathematical) solution exists and, in general, the equations of the mathematical model are nonlineal. In 
this way, the use of approximate numerical methods which, in turn, require a high degree of specialization 
far beyond the knowledge of undergraduate students, is indispensable. The network simulation method 
(NSM, hereinafter), widely used in a large variety of engineering problems (1,2,3), is an interesting, 
useful and easy to learn tool that may give help to students in solving this kind of problem.  
 

NSM takes advantage of the commercial computer codes to analyse electric networks which involve 
sophisticated techniques for the numerical solution of great variety of differential equations appearing in 
engineering problems. The only requirement of NSM (2) is to design a network model, the equations of 
which are formally equivalent to those of the mathematical model (time remains as a continuous variable, 
while spatial variable is discretized). Nevertheless, this design is not a serious objection since very few 
devices are needed to implement in the network any kind of term (addends) of the differential equations 
regardless of its inherent nonlinearity (each term is connected to an only device). Besides, very few 
programming rules are required to elaborate the network file needed for running it in the PC. The rest of 
the work, as regards the accuracy and convergence problems, is made by the computer code. Pspice (4,5) 
is used in this work. 
 

The common equivalence of these conjugated processes between the variables of the real problem 
and those of the network must take into account that the network potential must be a single-value 
continuous variable, whereas its gradient represents the instantaneous current flow. Examples: species 
concentration in ecological problems is connected to network potential, whereas the species flux is 
connected to the network current, and temperature is connected to network potential, whereas heat flux is 
connected to the network current. 
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The steps for designing the equivalent networks that solves these kinds of coupled nonlineal 
problems are set out in detail in this work. Starting from these rules, students can learn programming and 
experiment with their own designs. Applications to Lotka-Volterra and Lorenz problems are shown. 

2 NOMENCLATURE 
 
 

AN, BN, CN , … dimensionless or nondimensionless constants, N=1,2,3,… 
c   species concentration (members m-3)   
C   capacitor, also capacitance   
IC   network current  
f, g, h  arbitrary mathematical functions  
t   time (s) 
V   network voltage 
 

Subscripts: 
i, j, k  connected to the kind of species i, j, k, respectively 

 

Superscripts: 
m, n, l,  real numbers 

3 BASIC NETWORKS DEVICES AND MATHEMATICAL MODEL  
 
 

The differential equations that take part in the mathematical model are formed by an algebraic sum of 
terms like these: 
 
 
 

Ao(dci /dt) temporal change of the dependent variable ci (i=1,2, …),  
 

Bo   dimensionless constant 
 

Co ci   a fraction of the dependent variable ci, 
 

Do ci
n  a fraction of the polynomial function of the dependent variable ci,    

 Eo ci
n cj

m  a fraction of the product of polynomial functions of two dependent  
variables, ci and cj,   

 Fo ci
n cj

m ck
l  a fraction of the product of polynomial functions of three dependent  

variables, ci, cj and ck,        

             

 f (ci)   an arbitrary function of the dependent variable ci,  
           

  g (ci,cj)  an arbitrary function of the three dependent variables ci and cj, 
       h (ci,cj,ck)   an arbitrary function of the two dependent variables ci, cj and ck, 
 
 
 

According to Kirchhoffs current law, we may consider that each term defines an electric current that 
flows inside or outside, depending on the sign, to the same point in the network model. As regards the  
conservation of the network flux and the uniqueness of the network potential at any instant, no 
complementary condition is needed since the circuit laws (Kirshhoff currents and voltage laws), which 
are immediately satisfied, assume these requirements.  
 

The first term, Ao(dci /dt), is implemented in the model by a capacitor. As is well known, the electric 
current through a capacitor, iC, depends on the electric potential at its ends, V, in the form, iC = C((dV/dt), 
where C is the capacitance. Hence, the term Ao(dci /dt) is assumed by a capacitor of capacitance Ao. The 
initial voltage at the capacitors may be specified separately and corresponds to the initial condition 
V(t=0). 
 

The rest of the terms are implemented by the same device, named “controlled current source”. This is a 
special (very versatile) device that provides a current that may by specified by software. The current may 
be an arbitrary function of one or more potential (dependent variable) values. For each time, the 
concentration values are read at the points of the model where they are found, and operated adequately 
into the source to provide the required current output. For example, the obtain the current Eoci

n cj
m at any 

instant, the source reads the concentration values ci and cj (in the points of the network where they are 
defined), and works out the value of Eo ci

n cj
m. This value is the output current of the source at that instant. 
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The kind of problem we deal with, consisting of three dependent variables for simplicity, is formulated by 
a system of differential equations in the form 

 dc1/dt = A1 + B1c1 + C1c2 + D1c3 + E1c1c1 + F1c1c2 + G1c1c3 + H1c2c3 + I1c1c2c3 

 dc2/dt = A2 + B2c1 + C2c2 + D2c3 + E2c2c2 + F2c1c2 + G1c1c3 + H2c2c3 + I2c1c2c3 

 dc3/dt = A3 + B3c1 + C3c2 + D3c3 + E3c3c3 + F3c1c2 + G1c1c3 + H3c2c3 + I3c1c2c3 

The concentrations ci on the right of the above equations may be polynomial functions of ci. (for 
simplicity, these functions have been omitted). The mathematical model is completed by assuming initial 
conditions, this is 

 c1(t=0) = c1,0,  c2(t=0) = c2,0,  c3(t=0) = c3,0, 

4 APPLICATIONS 

 The Lorenz attractor. As the first application of the proposed method let us solve the Lorenz 
attractor´s problem discovered in 1962 (6), the first strange attractor ever recognized as such in the natural 
sciences and for which the answers to some very basic questions are still to be found. The system under 
study, initially formed by a 7-equation model (7), deals with the convective motion in a fluid heated from 
below and cooled from above to study the chaotic behaviour of the atmospheric layers. Guidelines to 
interpret this behaviour are sought. Lorenz simplified the above Navier-Stokes 7-eq.model to a system of 
three ordinary differential equations: 
 

 dc1/dt = A1(c2 - c1) 

 dc2/dt = - c2 + B1c1 - c1c3  

 dc3/dt = - C1c3 + c1c2 
 

 In this idealized model, the warm fluid below rises and the cool fluid above sinks, setting up a 
clockwise or counterclockwise current. c1 represents the fluid flow velocity, c2 is the temperature 
difference between ascending and descending fluid and c3 is the distortion of the vertical temperature 
profile from its equilibrium. The parameters of the system A1, and B2 represent the dimensionless Prandtl 
(ratio between the kinetic viscosity and thermal diffusivity) and Reynolds (ratio between inertial and 
viscous forces) numbers, while C1 is a form factor of the recipient (width/height ratio) where the gases are 
confined.  

    A1c2              c1 A1c1 

    dc1/dt  

    B1c1         c2   c1c3 

 c1   dc2/dt 

    C1c3           c3          c1c2 

 
Figure 1. Network model of Lorenz attractor 
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 The network model is shown in figure 1. It contains three separate networks, one for each equation. 
The current sense of the controlled current sources in each network agrees with the sign of the equation. 
Numerical values applied to the problem are: A1=10, B1=28, C1=8/3, c1(t=0)= c2(t=0)=c3(t=0)=10, Time 
interval = 100 s. After numbering the nodes of the network the text file to be run in Ppsice is:   
 

Cx 1 0 1 IC=10 
Gxsal 1 0 VALUE={10*V(1,0)} 
Gxent 1 0 VALUE={-10*V(2,0)} 
Cy 2 0 1 IC=10 
Gysal1 2 0 VALUE={V(3,0)*V(1,0)} 
Gysal2 2 0 VALUE={V(2,0)} 
Gyent 2 0 VALUE={-28*V(1,0)} 
Cz 3 0 1 IC=10 
Gzsal 3 0 VALUE={8*V(3,0)/3} 
Gzent 3 0 VALUE={-V(1,0)*V(2,0)} 
.TRAN 0 100 UIC 
.OPTIONS NOPAGE RELTOL=.01 
.END 
 

 The five last sentences allude to the time interval to be simulated and to the numerical accuracy of 
the solution. Time computing in a PC less than 1 s.  
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Figure 2. Phase Diagram of Lorenz problem, c1-c2 
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Figure 3. Phase Diagram of Lorenz problem, c2-c3 

 
 

 Figures 2 and 3, c1 as a function of c2 and c2 as a function of c3, respectively, show the solution of the 
problem (typical phase diagrams of the attractor). 

 The Lotka-Volterra problem. A family of models called the Lotka-Volterra equations (8) are often 
used to simulate interactions between two or ore populations. The three competition species Lotka-
Volterra model is form by the system of ordinary differential equations 

 dc1/dt = A1c1 - B1c1c2 - C1c1c3  

 dc2/dt = A2c2 + B2c1c2 - C2c2c3 

 dc3/dt = -A3c3 + B3c1c3 + C3c2c3 

ci(I=1,2,3) is the time dependent species densities. The network model is shown in figure 4. Numerical 
values are: A1=50, A3=10, A2=B1=C1=B2=C2=B3=C3=1, c1(t=0)=50, c2(t=0)=c3(t=0)=10, Time interval ≈500 s. 

 
    B1c1c2       c1   C1c1c3 

 A1c1  dc1dt

   C2c2c3       c2   B2c1c2 

 A2c2  dc2dt

 dc3dt  B3c1c3 

   A3c3       c3   C3c2c3 

 
Figure 4. Network model of Lotka-Volterra problem 
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Figure 5. Time evolution of species concentration 

 
 

Figure 6. Phase Diagram of Lotka-Volterra problem, c1-c3 
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 Figure 5 shows the temporal evolution of species concentration; one of the species (c2) disappears at 
the beginning. Figure 6 depicts c1 as a function of c3, sowing a cyclic structure in its evolution. Again, 
time computing in a PC less than 1 s. 

5 CONCLUSIONS 
 

 A simple, versatile and accurate model based on the network simulation method has been proposed 
for the numerical solution of the problems whose mathematical model includes coupled differential 
equations. This is a kind of non-trivial problem whose solution requires the use of numerical techniques. 
The design of the network model uses very few programming rules since only two devices are required 
whatever be the form of the nonlineal term in the differential equation. Thanks to this facility the student, 
with a minimum effort is able to design the model and to elaborate the pspice file to be running. Typical 
examples are included in the text to demonstrate the power of the proposed method. 
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