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Abstract:  Mathematics subjects have been exposed to important  structural changes at the Escuela 
Universitaria de Ingeniería Técnica Industrial de Valencia within an integrated multidisciplinary 
design supported by Universidad Politécnica de Valencia. 

Computer aided classrooms, shared by all subjects, are nowadays commonly used. This has 
extended the capability of using mathematical software within the theoretical expositions which 
have become much more practical and technological orientated, as well as facilitating the active 
participation of the student and reducing the time taken up to tedious calculation tasks.  

The aim of this work is to present how different mathematical software commonly used in 
engineering courses handle the calculation of roots of a complex number and how it can be 
improved by use of an adequate iterative process based on the rotation of sets in the complex field 
when multiplied by the exponential of an imaginary number. 
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1. Introduction 

Computer aided classrooms are nowadays commonly used in Mathematics classes. This has arrived further than just 
spending some time in a lab classroom each week at the Escuela Universitaria de Ingeniería Técnica Industrial in 
Universidad Politécnica de Valencia and computers form an integral part of the class.  

In this note we address a mathematical issue which is commonly used in Engineering courses, above all in 
Electrical and Electronic Engineering, such as calculating the roots of a complex number. This is a basic task and 
although we teach our students that there are n different complex numbers which are the n-th root of a given 
complex number, if no precaution is taken, computers usually provide us with just one of them. 

The aim of this note is to present how different mathematical software commonly used in engineering courses 
handle the calculation of roots of a complex number and how it can be improved by use of an adequate iterative 
process based on the rotation of sets in the complex field when multiplied by the exponential of an imaginary 
number. 

2.  Standard procedure to finding the roots of a complex number 

We start by exposing how the program DERIVE version DOS deals with the calculus of roots of a complex number 
[1]. The WINDOWS version deals in a completely parallel way.  

A complex number z may be represented in the coordinate plane by a point P which allows to characterize z by 
its modulus |z|, that is the distance from the origin to P, and its argument arg(z), that is the angle of P from the x-axis. 
It is standard to restrict the argument in radians to the interval ]-π,π], to the so called principal argument. If z  is a 
point in the complex plane and n is a natural number, then z1/n can take n distinct values in the complex plane, 
which by de Moivre’s theorem are  
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The modulus of any of these values is equal to |z|1/n, and the principal arguments are n equally spaced angles. For 
example, the modulus of 91/2 is 3, but the argument can be either 0 radians yielding 3, or π radians yielding –3.  

When simplifying z1/n the DERIVE program just provides one single value according to the option selected. The 
principal branch of z1/n  is the point in the complex plane whose modulus is |z|1/n and whose phase (which is the 



word used by DERIVE for argument) is the principal phase of  z divided by n. According to this notation, the the 
principal branch of  91/2 is 3 and the principal branch of (-8)1/3 is  1+ i√(3). 

By means of the Manage Branch command (Declare Algebra State Simplification Branch in the WINDOWS 
version) we may change the root DERIVE returns when simplifying rational powers by choosing a different 
argument of the n possible ones of z1/n . By means of this command we may choose between Principal  Real  Any. 

The Principal  branch option forces DERIVE to select this option and is most widely accepted systematic choice. 
The Real  branch option forces DERIVE to select a real root if one exists. So, with this option, (-8)1/3   is 

simplified to –2 instead of  1+ i√(3). 
The Any branch option allows DERIVE to use the maximum number of transformations when it does not matter 

which branch is chosen. In this option DERIVE applies systematically the transformations 
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Therefore DERIVE produces a single value of z1/n when there are actually n different complex numbers.   
With other scientific programs such as MATHEMATICA and MAPLE, the situation is similar and just one of the 
possible roots is obtained [2 -3]. So, for instance if we ask to simplify (-1)1/4 with MAPLE we will get just the value  
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There are two standard ways to solve the above failure of obtaining all the roots of a complex number z. One of 
them is to ask the program to solve an equation whose solution are the n-roots of z, that is to solve the equation 

.0=− zx n  
 This usually produces satisfactory results with the DERIVE program but on some occasions the results are not 

so good with the others when z is not real. The other possibility is to apply de Moivre’s formula and obtain one by 
one the n possible values of z1/n such as may be found for instance in [4]. 

3.  Finding the roots of a complex number as an iterative calculus application 
Iterative calculus are important in Engineering courses and appear repeatedly. For this reason we think it is 
interesting that students learn how an easy iterative process helps to calculate all the roots of a given complex 
number.   

We will start from the fact that students know that the n-th roots of a complex number may be represented as the 
vertices of a regular polygon with n sides centered in (0,0). This is due to de Moivre’s theorem. Hence once we have 
got one of the n-th roots of a complex numbers the others may be obtained by rotating 2π /n radians (n-1) times, 
which is equivalent to multiply the previous root by e2π i/n. 

On the other hand, the DERIVE program incorporates a command to make iterative calculations, which in fact is 
commonly used in numerical calculus. This command is 

( )( )nxxxu ,,,ITERATES 0  

where x0 is the initial point, u(x) is a function of x, and n is the number of times to repeat the iterative process. When 
we simplify the above expression the program returns 
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where u2 (x0 ) = u(u(x0)), u3 (x0 ) = u(u(u(x0))), and so on.  

Therefore, taking u(x) = x e2π i/n  and as initial value the root provided by the program when we simplify  

( )nz 1∧  
the command  

( ) ( )( )1,1,,2ITERATES −π⋅ ∧∧ nnzxniex  
enables to find the n-th roots of the complex number z. In the above expression we may omit the last argument n-1 
since in that case the program repeats the iterative process until it finds some values which coincides with some of 
the previously calculated ones, which is to happen in this case since after repeating the process n times we will get 
the initial value z1/n. 

For example if we want to find the six sixth-roots of  -729 we are able to gather the two previous steps and just 
introduce in the Author line  

( )( )5,)6/1()^729(,,3/ITERATES −π⋅ ∧ xiex  



Simplifying the above expression, the program will give us 
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In the WINDOWS version, and keeping the two separate steps we would have got the following 
 

 
 
Finally if we had introduced  

( )( ))6/1()^729(,,3/ITERATES −⋅ ∧ xiex π  
and simplify the above expression, the program would have provided us with 
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We note that this vector has seven coordinates, the last one coinciding with the first one. The sixth roots of –729 are 
the first six components.  

Analogously, the program MATHEMATICA also enables to obtain the six roots of this example by means of the 
command DO. Strictly speaking this command will not perform an iterative process but it allows to develop the 
same idea that is behind the above iterations by calculating, one after the other, the five rotations that the DERIVE 
command ITERARES generates from the only root that either of these programs generates. In fact if we ask the 
program MATHEMATICA to calculate 

( ) ( )61729 ∧−  
it will answer 3(-1)1/6. Not indeed a great advance. 

In order to get the six roots and in the line of the process exposed we should introduce: 
 

( )[ ][ ] { }[ ]5,0,,3**%intPr kIPikEandComplexExpDo ∧  
 

Recall that the MATHEMATICA program takes % as the last output (if we have done the previous step this symbol 
will be understood as 3(-1)1/6)  and ComplexExpand writes a complex number in the form x+iy.  

As with the DERIVE program we can perform these two steps in just one. In this case the screen of the computer 
should look like the following: 
 



 
 

4. Conclusions 

In general terms Mathematics teaching is very much helped with the use of computers. But definitely a little of the 
specific capabilities and way of working of the software used by the student must be known by him in order to take 
real advantage of it, at the same time of avoiding to get wrong conclusions.  

This particular issue we have addressed (to get all the roots of a complex number) and the iterative process we 
suggest to find them gives us a chance not only to teach the student how to calculate all the roots with a computer 
but to make the student understand how we make it, by rotation of the single initial value provided by the program 
we are dealing with. And for this the only thing we have to do is to multiply it repeatedly by the adequate 
exponential of a complex number.  

So the achievements are multiple: introducing the student to iterative processes, understanding de Moivre’s 
theorem and relating rotation of α radians in the complex field with product by eiα. 
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