
Web-Based Distance Experiments:
Design and Implementation

Timothy Chang1 and Douglas Hung2

1Department of Electrical & Computer Engineering, NJIT, Newark, NJ 07102USA
2Department of Computer & Information Science, NJIT, Newark, NJ 07102, USA

Abstract: As part of the effort to enhance retention and improve learning, web-based distance
experiments have been designed and implemented so that full-time and part-time students may
carry out their experimental work from home or other convenient sites on a flexible schedule. This
project differs from other existing web-based distance learning experiments in the following way:
First, our experiments are based on a Texas Instruments TMS320C31 floating point Digital Signal
Processor (DSP) which is capable of very hi gh bandwidth, real-time signal processing,
independent of the host PC’s configuration. Second, Java is used to implement the Internet
communication so that multi-user, near real-time interactive access can be achieved. Third, an
Application Programming Interface has been written for the DSP to facilitate platform
independent programming. Finally, the users have the option to upload their code segments to the
DSP via the Internet for to customize the experiment without posing security problems on the
server.

Keywords: Distance experiments, web-based system, real-time control, digital signal processing

1. Introduction
Among the various factors affecting the performance of students in urban institutions, the limited availability of
laboratory facilities is one of the most critical. This is especially so for part time students who are constrained by
their work schedule and ability to come on campus on a regular basis. With the increase in bandwidth through high
speed and ISDN data lines, web-based distance experiments can play a significant role in supporting the learning
process by providing a 24/7 laboratory with real experiments, not “sanitized” simulations, so that the students can
draw realistic conclusions and gain insight for real-life problem solving. General advantages of web-based distance
experiments include the ability to:
1. Enhance student learning.
2. Improve schedule flexibility.
3. Reduce laboratory operating expenses and equipment breakdown costs.
4. Introduce research experiments into teaching.

A number of web-based distance experiments are already in place. For example, Resource Center for Engineering
Laboratories at the University of Tennessee at Chattanooga offers distance experiments in process control and
dynamics with Labview interface[1]. Oregon State University’s “Second Best to Being There” network application
allows user to remotely control a robot arm [2]. The Automated Internet Measurement Laboratory established at
Rensselaer Polytechnic Institute and at the Norwegian University of Science and Technology [3] provides a remote
measurement module for semiconductor characterization.
While these approaches are meritorious and work well for the intended applications, it is the objective of this work
to devise a general-purpose, distance experimental system that possesses the following characteristics:
1. Efficient interactive/multi-user operations.
2. Machine/platform independent.
3. Secure operations.
4. Graphics User Interface compatible.
5. High processing bandwidth with true real-time capabilities.

To meet these requirements, several hardware (PC and digital signal processor) and software (Java and Application
Programming Interface) components are utilized and integrated. These components are described in Sections 2-4
below.

2. Internet Communi cation
Most existing web projects are written in CGI/Perl since CGI programs provide strong server-side control. However,
for web-based experiments where hardware reliability and safety issues are of primary concern, CGI can no longer
be used. Java programs, on the other hands, provide strong client-side control. Through graphical user interfaces,
clients can interactive with the server in real time. On the security issue, Java language has been deliberately made
to protect against invasion of computer resources. One further advantage of using Java is that Java programs (applets)
use sockets as their backbone. In the case of Java program, the socket connection can be maintained as long as the
applet is active. Thus, multi-user, intra, inter group interaction can be readily implemented. The students visit the
html page in the server-side by accessing its URL address. The html interpreter interprets this page and an applet is
then being requested. The applet interpreter deciphers the Java byte-codes and shows the result. Since the socket
connection keeps active, the data will be continuously manipulated and the changes will be shown as soon as they
are made. A server applet has been generated to handle upload and setting experimental parameters. A client applet
handles client-side user interface and deciphers input settings. The overall configuration is shown in Figure 1 while
multi-user access configuration is shown in Figure 2:

Figure 1: Client/server configuration

Figure 2: Multi-user access configuration

It should be noted that:
1. All members of the experiment can input their own parameters through the provided graphic user interface.

Users can discuss their opinions through the interface. Any designed member or the captain of the term can
issue commands to initiate the experiment. All the involved users can view the output of the DSP board.

2. The parameters or pre-coded messages are download to the shared memory and then the server applet
initiates an API application to compile the coded messages or to convert the parameters to an executable
code which will be uploaded to our DSP experiment circuit.

3. A control panel will then shown on the screen of the one who initiates the process. The generated code can
be loaded into the DSP circuit by click `load` button and the experiment can be initiated or stopped simply
by click the `go` or `stop` button.

4. The DSP board will continue to dump outputs to coded addresses of the shared memory, so that the server
can upload the responses and sends them to update the client sides, such that the progressing of the
experiment can be view in a real-time manner.

3. Pilot Experiment and Digital Signal Processing

3.1 The Pilot Experiment:
The pilot experiment, shown in Figure 3, is a Flexible Beam Control System where the beam position and
vibrations are to be regulated by a digital control system whose algorithm and parameters are to be designed and
implemented by the individual student groups.

Figure 3: Pilot Experiment: Flexible Beam Control System

3.2 The PC
The PC is a standard Intel Pentium based system. The DSP card and the encoder counter card are installed in the PC
as ISA add-on cards. No real time O/S is used or is necessary. Timing and synchronization are achieved in the DSP
system.

3.3 The Digital Signal Processor
The DSP system used for this project was the ‘Dalanco-Spry’ Data Acquisition and Signal Processing Board -
Model 310B. Block diagram of the Model 310B is shown in Figure 4 below:

Figure 4: Architecture of the Model 310B DSP Card
The DSP board has a Texas Instruments’ TMS320C31 DSP chip running at 50MHz, two 12-bit DAC, a 14-bit ADC
with a four channel differential multiplexer, and 128k words of memory. The memory on the DSP board is dual
ported, i.e. it is accessible at any time to the DSP as well as to the PC via the bus interface. The ADC and the DAC
are however accessible only to the DSP. Any data from the ADC and to the DAC must pass through the C31. The
DAC is capable of outputting at a maximum rate of 140kHz. The ADC has a maximum conversion rate of 300kHz

and has a programmable gain amplifier that gives a software programmable gain, ranging from 1 to 1000,
facilitating the handling of signals with small amplitudes.

3.4 Encoder Interface
The encoders are mounted on the motor shaft. The encoder board is basically a set of counters. The input signal is
filtered by a digital filter before entering the counters. The digital filter has a programmable cut-ff frequency, which
may be optimized to suit each application. The filtered inputs are applied to 24-bit counters.

4. Software Development
The TI DSP software development environment supports the Common Object File Format (COFF) and ANSI C
language, thus significantly simplifying code development on the PC for the DSP. The Apache server was used to
handling communication while servlet server handling read and write to the server.
The software tools used in this project include:
• Apache web server and Apache JServ servlet server
• TI C compiler, assembler, linker for floating point C3x/C4x DSP.
• Borland C/C++ Complier for the PC.
• Dalanco-Spry debugger, loader, and library functions.

4.1 Web Interface
The experiment starts by first run the sefver CentralServer by
 % java CentralServer
Then a client access to the following web-page:
 <FORM METHOD=POST ACTION="/servlets/ExpPage">
 <NPUT TYPE=SUBMIT VALUE="Enter">
 </form>
When the submit buttom is clicked, the servlets server calling ExpPage.class which in return calling other classes
and then creates a web page with which the main GUI interface was set. Each instance of ExpPage communicates
with the CentralServer and each of which is recognized by the server as a port number. That is, the input and the
response will be coded as IP address of the host with the designed port number. Thus, multiple clients for the
Central Server are readily accommodated.

4.2 C Programming on the DSP
Central to the C code development for the DSP is the suitable utilization of the Common Object File Format (COFF)
where each object file consists of a file header, section headers, raw data, relocation information, line numbers, a
symbol table, and a string table. For the C31, the most common sections are .text (code), .data (initialized data),.bss
(uninitialized variables), and name sections such as the interrupt vector table. Input object files are combined by the
linker to create an executable output file according to the memory and section directives specified in the linker
command file. In the linker command file, the interrupt jump table is supplied by vecs.obj which is loaded at
locations 0 to 3Fh. The function c30int.obj handles all interrupts except RESET which is vectored to _ c_ int00.
Linkage of this label to boot.ob j in rts30.lib enables the following tasks to be executed: 1) definition of .stack
section for system stack, 2) setting up initial stack and frame pointer, 3) initialization of global variables by copying
data from .cinit to .bss section, 4) setting up page pointer to .bss, and 5) calling main() to begin execution.

4.3 System Interaction
The software programs in this project ran simultaneously on both platforms: the control algorithms were executed
on the DSP. The programs on the PC performed the functions of data handling and web interface. The position of
the encoder is read from the encoder interface card by the PC, which is then transfer into the memory of the DSP by
the PC. The DSP then accesses this position and then calculates the servo command. The hardware interface to the
encoder card and the DSP card is through the PC-ISA bus. Figure 5 shows the data flow.

DSP

calculates
command

enc intfc
card

P5

Servo
command

Pos

Pos

Pos

Pos

ISA
Bus

Figure 5: Data Flow Between the PC and the DSP

4.4 API for the Digital Signal Processing Card
The Dalanco-Spry Model 310 B Data Acquisition and Signal Processing card has four analog input channels and
two analog output channels. An API is developed to facilitate platform independent programming. Specific
functions in the API now discussed:

The Dalanco Board needs initialization at startup. The ADC connects to the serial port on the DSP. So the serial port
and timer must be set up, and also the latch on the Dalanco Spry Board must be set up. For this the InitDSP()
function is implemented. The function call prototype is
void InitDSP(void);
 The output to the analog channels is written via the DAC. The function call for this is WriteDAC(..). The C
prototype for this is
int WriteDAC(int value, int channel);
To input analog values from the ADC the function ReadAdc() is called. The prototype for this function is
int ReadAdc(int channel);
This reads the value from the ADC for the voltage applied on the specified channel.
Finally, a number of interface routines are used for general I/O handling. These are:
• Grab: transfers data from DSP to PC in real time.
• int320: sends interrupt INT0 to the C31
• go320: runs the C31
• hlt320: halts the C31
• sendio: sends data from PC to the C31.
• recevio: receives data from DSP to PC.

5. Conclusions
This paper addressed the design and implementation of a web-based experiment. It differs from other existing
distance experiments in that it provides efficient multi-user, near real-time interaction and a very high real-time
signal processing bandwidth. A combination of Java and application programming interface are used to provide
platform independent programming for the users.

6. Selected References
[1] Henry, J., “Running Laboratory Experiments via the World Wide Web,” Session 3513 at the 1998 National
Meeting of ASEE, Seattle, Washington.
[2] Aktan, B., Bohus, C.A., Crowl, L.A., Shor, M.H, “ Distance learning applied to control engineering
laboratories,” IEEE Transactions on Education, Vol. 39, pp 320 – 326, Aug. 1996.
[3] Shen, H. Xu, Z., Kristiansen, V., Strom, O, and Shur, M, “Conducting Laboratory Experiments over the
Internet,” IEEE Transaction on Education, Vol42, pp. 180-185, August, 1999.

