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Abstract: In our master degree program in process automation, traditional modeling and control
courses are supplemented by courses in experimental design and chemometrics. A corresponding
inter-disciplinary research program supports this innovation in curricular structure. The
background for al this is the recent developments in chemometrics and the strong stand this
discipline has in the Scandinavian process engineering and industrial communities. The program
curriculum and related research results are presented, together with a summary of student and
industrial feedback.
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1. Introduction

The M.Sc. degree in process automation at Telemark University College is based on atwo years program on top of
an undergraduate degree in automation, electronics, mechatronics or electrical power engineering. Due to the recent
developments in chemometrics and the strong stand this discipline has acquired in the Scandinavian process
engineering and industrial communities, the traditional modeling and control courses are supplemented by coursesin
experimental design and chemometrics. A corresponding inter-disciplinary research program supports this
innovation in curricular structure. In the present paper we will first give a short outline of the program, and then
focus on subjects in the areas of estimation, system identification and chemometrics with experimenta design
(ESIC). Our research activitiesin these areas will aso be presented.

Thetotd of 40 Norwegian creditsin our M.Sc. program are at present represented by the coursesin Table 1.
Table 1. Coursesin Master degree program in Process Automation (° = optional)

Applied numerica analysis 2 | Structuresof industria control systems | 2°
Process control 2 | Advanced chemometrics 2°
Process modeling | (mechanistic) 3 | Advanced control topics 2°
Modern sensorsin systems 2 | Casestudiesin sensors and systems 2°
Process data technol ogy 3 | Operationa reliability and safety 2
State and parameter estimation 2 | Project administration 1
Process modeling |1 (mechanistic) 2 | Project (group assignment) 3
Chemometrics and experimental design 2 | Technology in society 1
Systemidentificationand predictivecontrol | 2 | Master thesis 9

In the table we have italicized the subjects in the ESIC area: 5 compulsory credits, 2 optional credits, 3 credits of
project assignment (more or less ESIC) and 9 credits of master thesis assignment (more or less ESIC). Theinterested
student might thus use close to onefull year studying these subjects.

The centrd theme in the Sate and parameter estimation course is Kaman filtering. This is applied on problems
concerning state estimation, parameter estimation by use of augmented and extended Kaman filters, identification
of ARX models by use of recursive least squares (LS) Kaman filter algorithms, and identification of ARMAX
models by use of innovations representation and the prediction error method. The essentia subject of persistent
excitation and its relation to statistical experimental design is also discussed. Our recent research results in this area
arerdated to the identification of product quality estimators based on secondary plant measurements [1-7]. Thisalso
includes the handling of highly multivariatedata by use of chemometrical methods.

A main subject in the Chemometrics with experimental design course is multivariate calibration by use of partia
least squares regression (PLSR). As a basis for this, standard methods for statistical experimenta design are



included. Special process related applications and advanced PL SR methods are presented in the optiona Advanced
chemometrics course. Our research in the areaiis focused on utilization of acoustic plant information [8-10].

The System identification course focuses on the modern subspace identification methods, that just as the
chemometrical methods utilizes projection of multivariate data onto various subspaces. This is related to
chemometrics by the use of PLSR as a factorization method, and by a discussion of the important plant excitation
issue. Our recent research results are related to system identification as such and to the PL SR algorithm [11-14].

It is an essential part of our program that the responsibilities of teaching the estimation and system identification
courses are combined with active research on the relations between these classica control subjects and
chemometrics, including industrial applications. The ESIC subjects presented above are aso to various degrees
applied in project and master thesis assgnments based on problems from industrid partners as Norsk Hydro,
Boredlis, Norske Skog and Norcem, that are all major Norwegian process industry companies. A typical exampleis
presented below.

2. Multivariatecalibration
2.1 The basicproblem

The central problem in the compulsory chemometrics course is the static multivariate calibration problem [15,16].
Assuming a static system with a scalar primary output or response variable y, and multivariate secondary Y,

outputs, the cdibration problem isto find an estimator b from experimental data that may be used to estimate nor

measured primary outputs according to )71 = y;tA)

A typical example is the estimation of protein content in whole wheat kernels based on near infrared (NIR)
spectroscopy [17]. Here, the protein content is the primary output Y, , while the NIR reflectance at a large number
of frequencies gives rise to the Yy, variables. A process related example is the estimation of distillation product
composition from a number of temperature measurements along the digtillation tower [18]. The fundamenta

problemin such casesisthat the number of y, variables may be much larger then the number of observationsin the
experimenta data.

Assuming  experimental data from independent observetions, Yy, = [y11 Yo 0 Yin ]T and
Y, = [y21 Yoo o Yon ]T , and independent observation errors, we find the LS solution

~ -1

be = (Y)Y v, )

With alarge number of y, variables, this solution will be very noise sensitive, an in practical applications the LS
method will work satisfactorily only when the number of variablesis much smaller than the number of observations.

2.2 The chemometrical solutions

In many practical situations, fortunately, the y, variables are highly collinear, and the information in alarge
number of Y, varigdbles may then be compressed into a much smaller number a of estimated latent variables

t= [fl t, - tAa]T . Themodel underlying such data compression is the latent variables (LV) model
Y =Lt +e @
Y, =Lt +&,

where g and e, areindependent observation errors.

In the chemometrical PLSR and principal component regression (PCR) methods, the Y, data matrix is compressed

into ascorematrix T by use of the factorization



Y, =TW +E, 3)

where E isaresidua matrix. Here WaTWa = |,, where a isthe number of principal components one decides to
use, and the least squares solution of (3) is thus T= YZVVa. The Y, datais thus projected onto alow dimensional

subspace defined by Wa , and the data compression resultsin the regularized | atent variables estimator [2,19]

b, =W, (\/(/aT A ) WY, y,. (4)

The dternative regularization method ridge regression [20] may give quite smilar end results. The advantage with
the chemometrical methods is, however, the interpretability of the latent variables involved [21], and this is an
important part of our compulsory chemometrics course.

2.3 Optimal regularization
The static model (2) may after asimilarity transformation be represented by the dynamic model

Xerr = Vi
Yie =CiX + ey )
Yox = CoXy + €,

where v, €, ad e,, arewhite noise sequences with covariances R , 1, ad R,,.

Standard Ka man filtering theory [22] then results in the optimal estimator

be = KT (KY,YV,KT)'KY, y,, ©)
where
K=RC](C,RC] +R,)". ™

The optimal weighting matrix in (4) is thusV\A/a = KTQ, where a isequal to the number of state variablesin (5),

and where Q isaninvertible matrix. However, an implementation of the optimal estimator would require a detailed
knowledge of the data generating system, including the process and measurement noise covariances, which

especialy in multivariate cases may be quite unrealistic. In practice we must thus be content with V\A/a »K'Q.

After the singular value decomposiion K =USVT =U[S 0|4V, V,]" =USV,", ad since US, is
invertible, wefind that the optimal estimator (6) may be written as

A TvT TNvT
bKF _Vl 6/1 Yz Y2V1 )‘/1 Yz Yi- (8)
SinceVlTV1 =1, thisestimator is quite similar to (4), and it isin fact possible to show that the columns of V\A/a are

rotated and noise corrupted versions of theV, columns[7].
2.4 Non-iterative PLSR algorithm

The well established PL SR algorithm isiterative in the sense that V\A/a is computed from the data column by column
[15]. It can be shown, however, that the controllability (Krylov) matrix

K, = l.YzT Yi (YzTYz)YzT i (YZTYZ )a-leT y1J (9)



may replace Wa in (4), resulting in anoriterative PL SR agorithm [13,14]. This may furthermore be extended to a
novel norriterative and optimal PL SR algorithm that incorporates multivariate y, data[13,14].
3. Dynamic system multivariate calibration
The dynamic model (5) isaspecial case of the more general dynamic mockl
Xesy = AX, +Bu, +Gv,
Vi =C X+ Dy, +w, (10)

Yok = CoX + Dyuy + Wy,

where U, are known system inputs, while v, , w;, and W, are white noise sequences. A Kalman filter with u,

ad Y, , used asinputs, will inthis dynamic case result in the optimal primary output estimate
91,k|k :Cl(l - Kcz)(ql - A+ AKCZ)-l[(B - AKDz)uk + AKyZ,k]+ClK(y2,k - Dzuk)+ Dluk’ (11)

where q° ! isthe unit time delay operator, and where the subscript in ylyklk indicates that data up to and including

timestep K is used. The optimal estimator (11) may be identified from sampled data by use of a prediction error
method [23,1], and this may be done also in the many practical multirate sampling cases where the experimental

data has Yy, values sampled only at alow and possibly irregular rate [3,6]. The requirement isthat U and Yy, ae
sampled at a high enough rate to capture the dynamics of the system.

In caseswhere y, ismultivariate and collinear, 'y, in(11) may bereplaced by t* =W’' Yy, [6].

4. Subspace identification

Subspace system identification (4SID) algorithms make use of projections of experimenta data onto low
dimensiond subspaces, and thus have an important feature in common with the chemometrical multivariate
calibration methods for static systems. The basic problem isin this caseto identify the dynamic system (10) as such,

with acommon Y, output.

In the best-known 4SID methods [24], the first step isto identify the extended observability matrix

0 =[cT (N (CA"l)T]T, (12)

r

and after the appropriate projections this can be done by LS methods. When an estimate 6)r is determined, Cis

obtained as the first block row, while A easily follows form the shift property of (5 i.e. the fact that

r v

[OrT_l (CA”)T]T = [CT (Or_lA)T]T .with A and C in place, it isan easy LS problem to find B ad D
from

~ ~\1
Y = C(ql - A) Bu, + Du, +w,. (12)
By use of ér it isalso possible to reconstruct the states X, in (10), and the statistical noise properties can then be
established.

In the DSR agorithm of Di Ruscio [11,12] the first step is to eliminate X, from the equetions, and aso here the

shift property of O, plays a vita role. After appropriate projections, estimates A |_5> C and D may then be
found by LS methods, although QR factorization plays a vitd role in the practical implementation of the algorithm.



The noise properties, i.e. the innovations covariance L and the gain K in an underlying Kalman filter, are then
also estimated.

5. Master thesisexample

The quality control of polymer production processes is a quite active research area [25]. In a present master thesis
assgnment related to the Boredlis polyolefine plant in Bamble, Norway, the problem is to identify melting index
estimators from plant data. The task includes data reconciliation, static PLSR modeling and validation, dynamic
multirate estimator identification, and discussions of estimator updating and feedback control schemes.

6. Cour se program evaluation

The course program in Table 1 is evaluated each semester. This has the form of discussions in the classes, followed
by a forma mesting between student representatives and all teaching personnel involved. Our experiences with this
form of oral evaluation are quite good, and the student response to the program is overdl positive. The responsein
the industrial community is aso quite favorable, as illustrated by the fact that around 90% of al master thesis
assgnments are given in close cooperation with industrid partners. Many of those are in the ESIC area. Pogt-
graduation feedback also indicates that the inclusion of experimenta design and chemometricsin the curriculum is
well motivated.
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