
An O(n4m) algorithm to minimize
the general flow shop scheduling problem

SAWAT PARARACH

Department of Industrial Engineering, Thammasat University,THAILAND

psawattu@hotmail.com

Abstract
On a general shop scheduling problem, n jobs are arranged on m machines in the series and must follow the same
routing. In this paper, we investigate the objective of minimizing the total flow time or the differ between comple-
tion times and release times and the makespan minimization. The flowtime and makespan minimization have been
proved to be NP-hard, therefore we consider the polynomial-time heuristic for the time-complexity of O(n4m) to
obtain the solution. From experimental results of 640 instances, the proposed procedure has better in the flowtime
and makespan values than the well-known method while remaining its time complexity.

Introduction
A general flow shop problem is a multi-operation processing involves a set of n jobs and m machines by all the jobs
must follow the same routing and machines are arrange in series. For each machine we know the order to perform it
and its processing time. The obtained solution is the schedule that minimized the total flow time of all jobs. The total
flow time is not makespan objective, but it represents the differ between completion and release time for each job.
The advantage of total flow time objective is minimization of work-in-process, but not restricted to none intermediate
storage inventory. In the case of the makespan objective, it considers the routing that minimizing the completion time
of the last job in the last machine, but not determine the waiting time for each job in the process. The sequence that
minimizing total flow time may be not the same as the minimized-makespan sequence.

Solution for turn-around of n jobs in flow shop scheduling rely on a set of restrictive assumptions as follows[1]:
-Single part or batch of parts are always treated as a single job.
-Preemption and job cancellation is not allowed.
-Processing times are independent of the schedule.
-Work-in-process is allowed
-Machines are able to process one job at a time.
-Each job visits all machines exactly once.
-Machines are always available and the only resource modeled.
-Jobs are all known in advance.
-The scheduling is purely deterministic.

Flow shop scheduling have been proved to be NP-hard[2]. In several years, many heuristics for solving these prob-
lem have been considered. Averbakh[3] studies the flow-shop problem with 2 jobs and m machines and uncertainly
interval processing times of operations. Soukhal et.al[4] investigate two-machine flow shop scheduling problems
taking transportation into account. Koulamas and Kypasiris[5] study the two-stage assembly flow shop scheduling
with concurrent operations in the first stage and a single assembly operation in the second stage. Yokoyama[6] con-
siders a flow shop scheduling model with partitions machining ,setup and assembly operations into blocks. On the
improved-heuristics for total flow time minimization, Agarwal et al. [7] develop the non-polynomial time heuristic
based on the adaptive learning approach. For polynomial time methods, Framinan and Leisten[8] develop a con-
structive heuristic based on pairwise interchanges approach, Laha and Sarin[9] improve its performance by node-
insertion procedures.
The proposed procedure in this paper is improving the method of Laha and Sarin[8] while not affecting its time-

complexity of O(n4m) algorithm. The investigation presents in Section 2. Results of the experimentation are demon-
strated in Section 3. Finally, concluding remarks are made in Section 4.

The O(n4m) polynomial time algorithm
From the literature, the effective heuristic has been solves many general flow shop instances in a time-complexity of
O(n4m) is considered by Laha and Sarin[9]. This concept based on node insertions that modified from the pairwise
interchanges of Framinan and Leisten[8]. The steps of this concept can be given as:

Step 1: For each job i, find the total processing time Ti which is given by

∑
=

=
m

j
iji tT

1

 for all i=1,2,…,n.

Step 2: Sort the jobs in ascending order of the sum of their processing times on all machines.
Step 3: Set k=2. Select the first two jobs from the sorted list and select the better between
 the two possible sequences.
Step 4: For k=3 to n do the following.
Insert the kth job on the sorted list into k possible positions of the (k-1)-job

current sequence, thereby generating k, k-job partial sequences, and select from these a k-job partial sequence with
the best total flow time value. Designate this as a k-job current sequence. Place each job (except for the kth job of the
sorted list) of this sequence into its(k-1) positions and select the best k-job sequence having the least total flow time
value from among those generated. This becomes the next k-job current sequence.

Step 5: If k=n, then STOP; else, go to Step 4.
From this concept, the modification in this research performs by adding the

step as Step 6. The Step 6 determines the pairwise interchanges on the n-job sequence
obtaind from STOP mode in Step 5 by interchanging jobs in position i and j for all i,j ,1≤ i ≤n, i <j ≤n. Select the best
sequence obtained among the n(n-1)/2 sequences
having minimum total flow time.

The examples of the step of the method of Laha and Sarin and the proposed procedure in Step 6 can be shown
in figure 1-5.
Note that Step 6 dictates the time-complexity of O(nm) for the schedule of n jobs on m machine , multiplied the
O(nm) of the schedule to the O(n2) operations of changing the sequence, the overall executed time in Step 6 is
O(n3m) .
From the working paper[9], Step 1-5 perform O(n4m) operations.
By Step 6 adding to Step 1-5, the procedure performs O(n4m)+ O(n3m) ≈ O(n4m) operations , since the pro-
posed procedure in Step 6 is not increasing the time-

Figure 1. The example of sorting jobs in step 1 and 2.

J3 J4 J5 J6J1 J2

Sorting the jobs from total processing
times

Figure 2. The example of selecting the starting sequence in the step 3

J1 J2

J2 J1

Select the better sequence from the
first two jobs.

Figure 3. The example of selecting job into the current sequence.

J2J1 J3

J3J1 J2

J2J3 J1

Select the better on the
inserttion of jobs from the sorted
list.

Figure 4. The example of sequencing in Step 4.

Ja Jb Jc Jd Jz
……………
….

Generating the new sequence
by Step 4.

Figure 5. The example of pairwise interchanges in Step 6.

Ja Jb Jc Jd Jz
……………
….

Generating the new sequence
 by Step 6.

complexity of Laha and Sarin method and advances in searching the minimized total flow time value.

Experimental Results
The experimentation have been carried out in 640 instances with n=10, 20, 30, 40, 50, 60, 70 and 80, and m=5, 10,
15, and 20, and the replication is 20 for each combination of jobs and machines[9]. For the generated random pro-
cessing times, it follows a discrete uniform distribution between 1 and 99.

The computer programs of the proposed procedure and the method of Laha and Sarin are coded in C++ language
and run on a Pentium4, 256 MB, 2.4GHz PC.
Average relative percentage deviation (ARPD) is considered to compare the performance of these method, it
defines as[9]:

∑

=

−=
20

120
100

i i

ii

B
BA

ARPD

For the ith instance, Ai is the total flow time value obtained from the Laha and Sarin method and Bi is the obtained
from the proposed procedure.The solution reports are demonstrated in Table1.
For all instances, the objective of minimizing total flow time and minimizing makespan can be applied to the code
program.

From the results, it is evident that the proposed procedure gives solution values better than the obtained from the
Laha and Sarin method both the objective of minimizing total flow time and minimizing makespan. The better
results from the objective of minimizing total flow time and minimizing makespan have been shown as ARPD in
table 1 and 2 , figure 6 and 7 respectively.
Due to the computing times of the proposed procedure, it takes more CPU times than the Laha and Sarin method,
but not greater than 0.1 second.

Concluding remarks
The proposed procedure by adding Step 6. into the method of Laha and Sarin enhances the performance measure-
ment of total flow time and makespan value, it represents the time-complexity of O(n4m). The pairwise interchanges
in Step 6 are not taken the computer times greater than 0.1 seconds for 640 instances and improved solution from the
obtained value by Laha and Sarin method. The proposed procedure is the suitable one for solving the general flow
shop scheduling problem in polynomial time.

Table 1. Comparison of the proposed methods for the objective of minimizing total flow time.

N m no.instances ARPD

10 5 1 to 20 0.982219

10 10 21 to 40 0.676018

10 15 41 to 60 0.633287

10 20 61 to 80 0.535631

20 5 81 to 100 1.042264

20 10 101 to 120 0.624009

20 15 121 to 140 0.669467

20 20 141 to 160 0.567634

30 5 161 to 180 0.766617

30 10 181 to 200 0.54204

30 15 201 to 220 0.449736

30 20 221 to 240 0.447026

40 5 241 to 260 0.662283

40 10 261 to 280 0.559147

40 15 281 to 300 0.359461

40 20 301 to 320 0.40412

50 5 321 to 340 0.565697

50 10 341 to 360 0.566107

50 15 361 to 380 0.374524

50 20 381 to 400 0.384409

60 5 401 to 420 0.678612

60 10 421 to 440 0.428656

60 15 441 to 460 0.386263

60 20 461 to 480 0.336179

70 5 481 to 500 0.477944

70 10 501 to 520 0.357064

70 15 521 to 540 0.391865

70 20 541 to 560 0.403442

80 5 561 to 580 0.606884

80 10 581 to 600 0.414618

80 15 601 to 620 0.39081
80 20 621 to 640 0.315106

Figure 6. ARPD analysis for the objective of minimizing total flow time.

ARPD analysis

0

0.2

0.4

0.6

0.8

1

1.2

10 10 20 20 30 30 40 40 50 50 60 60 70 70 80 80

Problem Instances

ARPD

Table 2. Comparison of the proposed methods for the objective of minimizing makespan.

N m no.instances ARPD

10 5 1 to 20 0.550132

10 10 21 to 40 0.851801

10 15 41 to 60 1.311459

10 20 61 to 80 0.823365

20 5 81 to 100 0.874063

20 10 101 to 120 1.037284

20 15 121 to 140 0.575118

20 20 141 to 160 0.830651

30 5 161 to 180 0.934585

30 10 181 to 200 0.806254

30 15 201 to 220 0.565922

30 20 221 to 240 0.527077

40 5 241 to 260 0.503105

40 10 261 to 280 0.650253

40 15 281 to 300 0.521265

40 20 301 to 320 0.497326

50 5 321 to 340 0.359122

50 10 341 to 360 0.456082

50 15 361 to 380 0.432683

50 20 381 to 400 0.368986

60 5 401 to 420 0.421359

60 10 421 to 440 0.38288

60 15 441 to 460 0.412617

60 20 461 to 480 0.425646

70 5 481 to 500 0.371372

70 10 501 to 520 0.302847

70 15 521 to 540 0.330696

70 20 541 to 560 0.347304

80 5 561 to 580 0.260466

80 10 581 to 600 0.384264

80 15 601 to 620 0.37028
80 20 621 to 640 0.301534

Figure 7. ARPD analysis for the objective of minimizing makespan.

ARPD analysis

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 10 20 20 30 30 40 40 50 50 60 60 70 70 80 80

Problem Instances

ARPD

References
Brandimarte P. and Villa A., (1992), Advanced Models for the Manufacturing Systems Management, U.S.A: 01.
CRC Press.
Gonzalez T, and Sahni S.,(1978), Flow shop and job shop scheduling: complexity and Approximation, Opera-02.
tions Research, 26, 36-52.
Averbakh I., (2006), The minmax regret permutation flow shop problem with two jobs, European Journal of 03.
Operational Research, 169, 761-766.
Soukhal A., Oulamara A. and Martineau P., (2005), Complexity of flow shop scheduling problems with transpor-04.
tation constraints, European Journal of Operational Research 2005, 161, 32-41.
Koulamas C. and Kyparisis G., (2007), A note on the two-stage assembly flow shop scheduling problem with 05.
uniform parallel machines, European Journal of Operational Research, 182, 945-951.
Yokoyama M., (2008), Flow-shop scheduling with setup and assembly operations. 06.
European Journal of Operational Research , 187, 1184-1195. Agarwal A., Colak S., and Eryasoys E. Improve-07.
ment heuristic for the flow-shop scheduling problem: An adaptive learning approach. European Journal of Op-
erational Research,169, 801-815.
Framinan J.M., and Leisten R. An efficient constructive heuristic for flowtime minimization in permutation 08.
flowshops. Omega 2003, 31, 311-317.
Laha D. and Sarin S.C. A heuristic to minimize total flow time in permutation flow shop. Omega, 37, 734-739.09.

