
A Maturity Environment to Software Engineering Education

Kechi Hirama1, Selma Shin Shimizu Melnikoff2

1,2Dept. of Computer Engineering, Escola Politécnica of University of São Paulo, São Paulo, Brazil,

kechi.hirama@poli.usp.br1, selma.melnikoff@poli.usp.br2

Abstract
A maturity environment is presented, aiming to support software engineering education. This environment is part of
a processes framework being developed in the Software Technology Laboratory (LTS) of the Department of Com-
puter Engineering of Escola Politécnica of University of São Paulo, Brazil. The framework is a three-level model
with Reference Model, Maturity Environment and Real Environment. The framework is based on ISO/IEC 12207
standard and on the teaching, researching and extension activities of LTS members. The Reference Model defines a
meta-model that guides the processes definition to Maturity Environment. The processes are Management, Develop-
ment and Software Quality Assurance. The Maturity Environment is a generic model that details Reference Model
processes. Further, this environment can be instantiated in an organization that constitutes a Real Environment. This
last level could be a classroom, a software didactical laboratory or a software factory organization. The framework
will be improved based on continuous improvement strategy, such as PDCA cycle. The benefits of the Maturity
Environment are applying different teaching approaches in undergraduate, graduate and extension courses, develop-
ing projects and researches in an integrated environment, evaluating the performance of disciplines and improving
communications among students, professors and researchers in the LTS.

Introduction
he Department of Computer Engineering of Escola Politécnica of University of São Paulo (Brazil) is constituted by
11 research laboratories, among which the Software Technology Laboratory (LTS). The LTS was launched in 1999
by a group of researchers interested in the Software Engineering area. Nowadays, the LTS has 9 researchers and its
members also conduct activities in undergraduate, graduate and extension courses. [5, 6]

In 2004, a restructuring work of LTS activities was started to improve the interactions among researchers in the
laboratory. After many issues were detected and solved, the LTS had a new structure to guide all its members´ ex-
pectations. In this context, the LTS aims at the development of human resources, integrated research programs, and
technology transfer to be a reference center in Software Engineering.

The LTS is interested in the following areas [5, 6]

- Software architectures: visions, frameworks, components, patterns, distributed objects, reference models;
- Databases: object-oriented and distributed databases, data modeling, knowledge databases, data warehouses,

data mining;
- Requirements engineering: elicitation techniques, analysis, validation, requirement management techniques and

processes;
- Software project management: models, estimation techniques, risk analysis, project performance analysis, per-

sonnel management, acquisition and supplying;
- Human computer interface: usability engineering, human reliability, groupware interfaces;
- Formal methods: formal requirements specification, formal verification and validation, model checking;
- Software processes: life cycle models, component-based development, software factory, unified process;
- Software quality: standards and models, quality management system, metrics, assessments, evaluations;
- Software reuse: processes and techniques, patterns, components, metrics;
- Object orientation: modeling, development processes, architectures.

After the discussions of its objectives, a project named Maturity Environment was started in 2004 with the LTS
members. The Maturity Environment should define the framework of the main LTS processes based on knowledge
areas. This framework should provide a better communication among professors, researchers and research groups in
common subjects, improve the resource sharing and update students’ education in Software Engineering.

Maturity Environment is one level of the LTS framework. [3, 5, 6]

The LTS Framework
The LTS framework (presented in Figure 1) is based on ISO/IEC 12207 standard [8] and teaching, research and
extension activities of LTS members. It intends to provide an intuitive structure according to academic results de-
veloped by researchers, professors and students of the Software Engineering course. It is organized in a three-level
model with Reference Model (conceptual level), Maturity Environment (logical level) and Real Environment (physi-
cal level). [5, 6]

The conceptual level is constituted by processes based on the main activities developed by LTS members. It was
based on the analysis of many materials developed in disciplines, dissertations, thesis, papers and professional activi-
ties. After that, the Management, Development and Quality Assurance processes were chosen as the first configura-
tion of the Reference Model. The Reference Model aims to guide the LTS to identify new research areas, integrating
efforts, resources and promoting the interactions among its members. This level has been constantly fed according to
new results. Thus, other processes of ISO/IEC 12207 standard could be included in the Reference Model.

The logical level represents the detailed processes identified at a conceptual level. At this level, the Management,
Development and Quality Assurance processes were described and their activities, inputs, outputs, controls and roles
were defined. The process components are also based on the ISO/IEC 12207 standard.

The physical level represents the instances defined from logical level processes. These instances can be created in
undergraduate, graduate and extension courses and activities. Each instance can be defined according to organiza-
tion, for example, in laboratories, classrooms or a software factory environment. At this level, an instance can use
the concepts, definitions, standards and models defined by the Maturity Environment or, in some cases, it can define
specific activities to be more realistic in its needs.

In the students’ point of view, the instances allow conducting experiments, developing projects and participating
in researches to complement their learning. In the professors’ and researchers’ point of view, the instances allow
researching and developing new approaches to disciplines in an integrated framework. In the organization point
of view, the instances allow implementing new technologies or methods that will improve the productivity and the
quality of products. Besides, the instances can be used to train personnel in specific activities to disseminate new
practices.

The Maturity Environment
The Maturity Environment is a set of organization processes that can be instantiated to develop and implement pro-
cesses in specific projects, software factories, classrooms and didactical laboratories. In this way, each LTS member
has a uniform vision of activities and can improve his/her concepts in Software Engineering. [11, 12]

The Maturity Environment aims to reduce the distance between Software Engineering and organizations practices
besides integrating the LTS activities to this environment.

Nowadays, the regular updating of technology courses is necessary to be in a state of art position in new academic
approaches and tools launched by different suppliers, besides the complex software applications that embed many
concepts; these should be understood to enhance productivity and quality in organizations.

Figure 1: LTS framework. [5, 6]

In this scenario, the Maturity Environment is the result of knowledge alignment that was built along researching,
teaching and extension activities developed over time at LTS.

The expectation concerning this environment is to develop it gradually so as to transfer the knowledge and the prac-
tices to the students, from their first year in the Computer Engineering course to the conclusion. The student could
develop his/her capabilities from basic concepts of computing in the beginning to complete projects in the last year.
Furthermore, this approach allows teaching processes to be evaluated during the courses and to propose indicators
to improve them.

Further on, the student can start academic researches choosing themes among the many possibilities indicated by
the Maturity Environment. To the students, there will be the possibility to continue the researches in graduation pro-
grams at the Department of Computer Engineering (PCS).

One of the challenges of the Maturity Environment is defining, updating and maintaining the necessary consistency
and relevance of disciplines in undergraduate, graduate and extension courses offered by PCS. One of the important
aspects of the Maturity Environment is allowing monitoring the technology evolution so that students can under-
stand; after they have concluded their courses, they can be prepared to the daily tasks at organizations with produc-
tivity and quality.

Case Studies
In order to apply and evaluate the proposed Maturity Environment, three disciplines were chosen as instances, two
undergraduate (PCS 2053 and PCS 2426) and one graduate one (PCS 5774) in the Computer Engineering course.

First of all, each discipline was evaluated considering its original contents proposed. The PCS 2053 discipline is fo-

cused on management and quality assurance, whereas PCS 2426 focuses on fundamentals of Software Engineering
and PCS 5774 on software quality. After tailoring the Maturity Environment processes in the discipline contents, they
were instantiated in three classes, each with about 20 students for two semesters last year.

The Management process activities, according to the ISO/IEC 12207 standard, are initiation and scope definition,
planning, execution and control, review and evaluation and closure. [8] All of processes related to ISO/IEC 12207
have been included in the Management process in Maturity Environment. In the instantiated management process
(PCS 2053), only the closure activity was not considered because there is not enough time for it in regular classes.
More than 10 projects were concluded. The teams did not conduct lessons learned meetings and this activity was
deemed necessary to improve PCS 2053. The main point was creating a historical database of projects.

The Development process activities according to ISO/IEC 12207 standard are process implementation, system
requirement analysis, system architectural design, software requirements analysis, software architectural design,
software detailed design, software coding and testing, software integration, software qualification testing, system
integration, system qualification testing, software installation and software acceptance support. [8] Only activities
system integration, system qualification testing, software installation and acceptance support were not included in
the Development process in the Maturity Environment. In the instantiated development process (PCS 2426), the
activities related to software coding and testing were not considered because the system and software analysis and
design were defined as a first approach. The students developed static and dynamic models based on customer needs
specified by the professor. During the software design activities, they detected the artifacts that did not meet the us-
ers’ requirements. The students concluded that a requirements traceability matrix tool or similar to support tracking
requirements could improve PCS 2426. The main point was long wasted time to correct artifacts during software
modeling and design.

Finally, the Quality Assurance process activities according to the ISO/IEC 12207 standard are process implementa-
tion, product assurance, process assurance, assurance of quality systems. [8] Only the assurance of quality systems
activity was not included in the Quality Assurance process in the Maturity Environment. In the instantiated quality
assurance process (PCS 5774), the product and process assurance activities were considered. Many works and papers
about software quality were studied and discussed by students in seminars. In the end, the students considered that
assurance of quality systems based on the ISO 9001 standard would be important to treat issues concerning standards
and quality model compliances in PCS 5774. This was detected when the students had difficulties in applying best
practices in projects and in independent assessment, such as quality assurance, and deemed it would be important.

Table 1 presents the most important points of the case studies.
Table 1: Most important points of the cases studies.

ISO/IEC 12207 Maturity Environment Instances
Management Management PCS 2053

Initiation and scope definition, plan-
ning, execution and control, review
and evaluation, and closure.

All the former, except closure activ-
ity.

Closure activity should be consid-
ered.

Development Development PCS 2426
Process implementation, system
requirements analysis, system ar-
chitectural design, software require-
ment analysis, software architectural
design, software detailed design,
software coding and testing, software
integration, software qualification
testing, system integration, sys-
tem qualification testing, software
installation and software acceptance
support.

All the former, except system integra-
tion, system qualification testing,
software installation and acceptance
support activities.

Requirements traceability matrix tool
or similar should be considered.

Quality Assurance Quality Assurance PCS 5774
Process implementation, product as-
surance, process assurance, assurance
of quality systems

All the former, except assurance of
quality systems.

Assurance of quality systems based
on the ISO 9001 standard should be
considered.

The instantiation of processes starting with Maturity Environment indicated to be adequate according to the results
and conclusions reached by students. All methods, techniques, templates, activities and tasks applied in some disci-
plines should be first analyzed in the Reference Model context. Then, new processes of the ISO/IEC 12207 standard
could be considered in a structured manner following the levels of LTS framework.

Consequently, these processes in Maturity Environment could be instantiated in different organizations.

Conclusions
The Maturity Environment improves the performance of Software Engineering education, following the best prac-
tices evolution proposed by researches and learned lessons, establishes a common terminology and patterns and al-
lows transferring technology in extension activities. The continuous improvement cycles, such as PDCA [9], IDEAL
[4], could improve the processes to enhance students’ learning.

The adoption of the ISO/IEC 12207 standard as a reference to LTS framework has shown to be adequate, mainly at
logical level, where Maturity Environment is defined. It should be emphasized that either processes structure or the
Maturity Environment itself is robust to support the LTS mission. Besides, the application of the ISO/IEC 12207
standard in a different context of a software development organization has allowed knowing the standard and con-
firming the possibility to apply it in a research laboratory, such as the LTS.

The Maturity Environment also follows well known standards and models practices in software process organiza-
tions, such as ISO/IEC 9001 [10], CMMI [2] and MR-MPS [13, 14]. In this sense, another important point is that
processes of this environment could be evaluated to obtain official maturity certifications, by applying the ISO/IEC
15504 standard [7], SCAMPI [1] or MA-MPS [14], to maintain and improve the processes.

The benefits of the Maturity Environment are applying different teaching approaches in undergraduate, graduate
and extension courses, developing projects and researches in an integrated environment, evaluating performance of
disciplines and improving communications among students, professors and researchers in the LTS.

References
AHERN, D. M.; ARMSTRONG, J.; CLOUSE, A.; FERGUSON, J. R.; HAYES, W.; NIDIFFER, K. E. (2005). 01.
CMMI SCAMPI Distilled – Appraisals for Process Improvement. Pearson Education Limited. 218p.
CHRISSIS, B.; KONRAD, M.; SAND, S. (2006). CMMI for Development – Guidelines for Process Integration 02.
and Product Improvement. 2nd. Edition. Addison-Wesley.
COSTA, H. A. X.; ALMEIDA, S. A.; CUNHA, G. J.; HIRAMA, K.; RESENDE, A. M. P. (2007). Artefatos de 03.
Software do Processo de Desenvolvimento da Norma ISO/IEC 12207. In: I Congresso de Ciência da Computa-
ção e Sistemas de Informação. Annals. Lavras – MG. Brazil.
GREMBA, J.; MYERS, C. (1997). The IDEAL(SM) Model: A Practical Guide for Improvement. v1.1, SEI. 04.
(http://www.sei.cmu.edu accessed in 04/23/2008).
HIRAMA. K. (2008). Um Ambiente de Maturidade para um Laboratório de Pesquisa na Área de Engenharia de 05.
Software. Livre Docência Thesis. Escola Politécnica of University of São Paulo. São Paulo. Brazil. 156p.
HIRAMA, K.; MELNIKOFF, S. S. S.; BECERRA, J. L. R. (2005). Projeto de Ambiente de Maturidade de um 06.
Laboratório de Pesquisa na Área de Engenharia de Software. In: XXXIII Congresso Brasileiro de Ensino de
Engenharia. Annals. Campina Grande – PB. Brazil.
ISO. ISO/IEC 15504-1 Information Technology – Process Assessment – Part 1: Concepts and Vocabulary. ISO. 07.
2004.
ISO. ISO/IEC 12207 (2008). System and Software Engineering – Software Life Cycle Processes. ISO.08.
KINULLA, A. (2001). Software Process Engineering Systems: Models and Industry Cases. Oulu University 09.
Press. 115p.
MUTAFELIJA, B.; STROMBERG, H. (2003). Systematic Process Improvement ISO 9001:2000 and CMMI. 10.
Artech House. 300p.
PRESSMAN, R. S. (2004). Software Engineering: A Practitioner’s Approach. McGraw-Hill Higher Education. 11.
880p.
SOMMERVILLE, I. (2007). Software Engineering. 8th edition. Pearson Education Limited. USA. 552p.12.
 WEBER, K. C.; ROCHA, A. R.; ALVES, A.; AYALA, A. M.; GONÇALVES, A.; PARET, B.; SALVIANO, C.; 13.
MACHADO, C. F.; SCALET, D.; PETIT, D.; ARAÚJO E.; BARROSO, M. G.; OLIVEIRA, K.; OLIVERIA,
L. C.; AMARAL, M. P.; CAMPELO, R. E. C.; MACIEL, T. (2004). Modelo de Referência para Melhoria de
Processo de Software: Uma Abordagem Brasileira. In: XXX Conferencia Latinoamericana de Informatica. 27 de
setembro a 01 de outubro. Arequipa – Peru.

