
	   1	  

Introducing Complex Sociotechnical Systems to First-and 
Second-Year Students 

 
 
 

1Joseph M. Sussman, 2Afreen Siddiqi, 3Regina Clewlow 
 

JR East Professor of Civil and Environmental Engineering and Engineering Systems, 
Massachusetts Institute of Technology, Cambridge, USA, sussman@mit.edu1;  

 
Research Scientist, Engineering Systems Division, Massachusetts Institute of 

Technology, Cambridge, USA, siddiqi@mit.edu2;  
 

PhD Candidate, Engineering Systems Division, Massachusetts Institute of Technology, 
Cambridge, USA, rclewlow@mit.edu3  

	  
	  
	  

Abstract 
Retention of undergraduate engineering students remains a key challenge faced across the 
globe; in particular, the first two years of the required curriculum is often cited as a significant 
hurdle.  Many students are attracted to engineering in order to solve important real-world 
problems. However, in the first two years, the majority of students find themselves in classes 
focused on the fundamentals of math and science, with little or no apparent connection to the 
real-world issues they care deeply about.  Furthermore, most students traditionally develop a 
deep understanding in a specific engineering discipline, with limited opportunity to consider or 
analyze complex, sociotechnical systems (e.g. energy systems, transportation networks, 
healthcare) – systems that are the focus of critical engineering challenges.  Although the subject 
of large-scale, sociotechnical systems has been successfully integrated into the realm of 
graduate education, it has seen limited attention in undergraduate studies where it has the 
potential to inspire and help retain the next generation of engineers. 
 
This paper describes the development and implementation of a novel course, intended for 
freshmen and sophomores, that has been designed to address some of the needs of a new 
generation of students who are passionate and more engaged than ever before in understanding 
and impacting contemporary problems. The new course centers around the theme of Critical 
Contemporary Issues (CCI) – important and difficult problems pertinent to our present times on 
topics of sustainability, mobility, energy and the environment, healthcare, communication, the 
internet etc. In this course, we weave introductory instruction in system dynamics, networks and 
uncertainty with teams working on different semester-long projects. Through this approach, we 
enable students to engage in and understand the issues at play in a problem of their interest, 
appreciate the scope of the sociotechnical complexities in CCIs, and gain an introduction to 
analytical tools that can help in addressing some of these issues. This paper discusses the 
overall philosophy and motivation for establishing the course, the design of the curriculum, and 
the approach, execution, and integration of team-based projects. 
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1. Introduction 
Many students are attracted to engineering in order to solve important real-world problems. 
However, in the first two years, the majority of students find themselves in classes focused on the 
fundamentals of math and science, with little or no apparent connection to the real-world issues 
they care deeply about. During later undergraduate years, most students develop a deep 
understanding in a specific engineering discipline. However, they often have very limited or no 
opportunity to learn about and analyze complex sociotechnical systems (e.g. energy systems, 
transportation networks, healthcare) – systems that are the focus of critical engineering 
challenges.   
 
Many of our most interesting, complex engineering challenges no longer fit into neat boxes of 
academic disciplines – they are interdisciplinary and require systems thinking. The level of 
interactions and complexity in modern systems requires a new level of expertise and trans-
disciplinary perspectives that perhaps was not needed before. Systems thinking, and the skills to 
tackle complexity need to be inculcated in engineering stuents sooner rather than later. It is 
getting ever more important for even young engineers (not just senior practitioners) to obtain such 
skills. Charles Vest, President of the National Academy of Engineering, notes, “Engineering 
education in the 21st century will need to be redefined and reinvented if it is to successfully meet 
the grand challenges of sustainability, health and security…” [1]. 
 
While the need for updating and improving engineering curriculum is increasingly recognized [4], 
change has been slow, in particular at the undergraduate-level. Students who are interested in 
addressing current real-world problems that are inter-disciplinary in nature typically get no 
exposure, at an early undergraduate level, to tools and methods that are available for rigorously 
and systematically analyzing such problems. The development of analytical skills for studying 
such problems has been largely reserved at graduate-level education. However, engineering 
students are increasingly interested in working on contemporary challenges early on. The 
students now entering engineering programs are more aware and better equipped for conducting 
sophisticated analysis due to their access to information, knowledge and tools that previously 
were not available to prior generations. It is therefore important – both for retaining students and 
for harnessing their curiosity towards potentially finding new solutions – to offer undergraduate 
courses that allow them to engage with complex, contemporary problems.  
 
This paper describes the development and implementation of a novel course, ESD.00- 
Introduction to Engineering Systems, offered on a pre-pilot basis by the Engineering Systems 
Division (ESD) at the Massachusetts Institute of Technology (MIT) in the spring semester of 2011 
[5]. Intended for first and second year students, it has been designed to engage and challenge a 
new generation of students who are passionate and more involved than ever before in 
understanding and impacting contemporary problems.  
 
The new course centers around the theme of Critical Contemporary Issues (CCI) – important and 
difficult problems pertinent to our present times on topics of sustainability, mobility, energy and 
the environment, healthcare, communication, the internet etc. In this course, we weave in 
introductory instruction in system dynamics, networks and uncertainty with teams working on 
different semester-long projects. Through this approach, we aim to enable the students to engage 
in and understand the issues at play in a problem of their interest, appreciate the scope of the 
sociotechnical complexities in CCIs, and get an introduction to analytical tools that can help in 
addressing some of these issues. This paper discusses the overall philosophy and motivation for 
establishing the course, the design of the curriculum, the execution and integration of team-based 
projects, and plans regarding its future scalability and improvement. 
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2. Motivation 
The motivation for developing and offering this course stems from a broader vision of ESD at MIT 
[6], in which it is recognized that future engineering leaders should not just possess knowledge 
and expertise of devices and artifacts but also be experts in dealing with complex, large-scale 
sociotechnical systems. Historically, engineers have largely acquired expertise and 
understanding of complex systems through practice in their profession. Little attention was paid 
towards creating structured curricula, classes or degree programs focused on studying complex 
engineering systems. However, we are presently part of an era in which the inventions of the past 
two centuries for energy, transportation, and communication have coupled together to form highly 
interdependent, large-scale systems [2]. Thomas Edison’s light bulb, James Watt’s steam engine, 
and Alexander Graham Bell’s telephone have transformed into ever more sophisticated and 
impressive devices today – but they form only a part of larger systems, that in turn are parts of 
even larger system-of-systems. While we have, to a great degree, advanced our knowledge in 
the art and science of designing new products, we have yet to explore the domain of design, 
operation, and management of inter-twined, complex engineered systems. As a result of this 
increase in demand for multi-disciplinary systems experts, graduate engineering education has 
started to focus on offering courses, concentrations and degrees in engineering systems. MIT’s 
ESD program is a concerted effort in this direction.  
 
ESD’s vision is to advance research in these areas and to also simultaneously impart knowledge 
of established methods and approaches to our students for tackling such problems. To date, we 
have conducted these efforts mostly at the graduate-level, and a strong student response and 
interest in our programs indicates a good measure of success (see Fig. 1).  

 
Figure 1: Student enrolment in ESD at MIT [3]. 

 
Building from our experience and success at the graduate-level, we aim to extend this endeavor 
to undergraduate classes and the experiences undergraduates have outside the classroom as 
well. In some ways it is perhaps more important at the undergraduate level since some basic 
needs of the engineering profession, education and practice are changing in significant ways. The 
US National Academy of Engineering recognizes that in today’s landscape of a continually 
changing society, engineering education must adapt to remain relevant [7].  
 
Traditionally, engineering education has focused on systems where the boundaries encompassed 
metal, machines and constructed facilities. It is has now become important to expand those 
boundaries to include humans and institutions. Such an expansion essentially extends the focus 
from simply technical to sociotechnical systems, where technical as well as societal, economic, 
political, and regulatory factors weigh in prominently.  
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As historically disparate technical systems become inter-twined and humans and societal factors 
become non-negligible variables in design decisions, engineers of tomorrow will need to deal with 
requirements that are not just physical, but also increasingly social, political, economic in nature. 
At some level, this has always been the case. However, such considerations were not needed to 
be as integrated in the design, management and operation of engineering systems as they are 
increasingly required now. This new, increased level of integration requires a rethinking and 
redesigning of how we go about training our future engineers who will, for instance, have to deal 
with global manufacturing and supply chains, create and maintain new infrastructures and design 
systems for accessible and affordable healthcare. This course is an initial step, at the 
undergraduate level, towards inculcating broad, holistic thinking in our next generation of 
engineers. While learning the technologies central to these systems is essential, our students 
need to learn how social sciences and management ideas are integrated into our study of CCIs, 
creating that holistic individual.  
 

 

3. Design of ESD.00 
The basic objective of the course was to expose first and second year students to concepts and 
methods that can be used for tackling critical, contemporary issues associated with sociotechnical 
systems such as that of energy, mobility, communication, healthcare etc.  We designed this 
course to be principally a project-based class, grounded with weekly lectures and a few 
supplemental tutorials. The lecture component provided the means for introducing the concepts 
and methods relevant for the class as well as a forum for in-class discussions. The projects were 
supervised by a graduate student or faculty member, and were conducted in small teams over the 
course of the entire semester. The projects served to engage the students’ interest and provided 
real-world examples for applying the concepts and methods introduced in the lectures.    
 
The lecture topics were selected carefully to reflect the introductory level of the course, but also to 
enable the students to acquire understanding of important concepts related to complex, 
sociotechnical systems. We selected three key topics: systems dynamics, uncertainty and 
networks. These topics collectively provide means for studying non-linearity, feedback, 
interconnections, and ambiguity that characterize most real-world problems. Furthermore, there is 
a rich body of literature and a fair level of maturity that exists for these topics [8-10]. A substantive 
and well-grounded material, suitable for undergraduate instruction, could therefore be presented.  
Additionally, the application of these methods towards studying sociotechincal systems is well 
developed and recognized not just in a theoretical sense, but also in actual practice and real-
world applications [8]. The application of these methods and approaches towards modeling and 
analyzing systems with both technical and social aspects was emphasized and demonstrated. 
Usually, these topics are covered in various engineering courses (especially uncertainty and to 
some extent systems dynamics through differential equations); however the examples and 
applications are typically focused on technical and physical modeling only. The key difference in 
this class was how these topics were introduced and explained, and the kinds of examples used 
so that the students could understand how these methods apply to analysis of sociotechnical 
systems. 
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Fig. 2: Two-pronged approach for ESD.00 – theoretical instruction and practical 
application 
 
In addition to the key topics that were treated in depth (with multiple lectures devoted to each), we 
included lectures on basic systems concepts and definitions (delivered at the beginning of the 
semester) and on stakeholders and evaluative complexity (delivered towards the end of the 
semester) [11]. Near the end of the semester, one lecture session was reserved for a local field-
trip to a facility relevant to the student projects.  
 
We took special care in integrating the two segments, the lecture and the projects, of the course. 
The integration was done through assigning mini-project deliverables to each team, in which the 
methods and concepts discussed in lectures had to be applied. For instance, each team was 
asked to create causal loop diagrams (as taught in systems dynamics approach), identify key 
uncertainties, and create network models for their respective systems. This integration of lecture 
material with projects was expressly designed to ensure cohesion between the two threads of the 
course as well as to allow students to apply the concepts to actual real-world applications. 
 
A detailed description of the course and the syllabus can be accessed at [5]. The class materials 
will also become available through MIT’s open course ware (OCW) website [12]. 
 
 

4. Pre-Pilot Offering of ESD.00 
In our pre-pilot offering of the course in the spring semester of 2011 at MIT, seven students 
completed the course, out of initially nine students who started off at the beginning of the 
semester. This drop rate is in the range of what we observe in other elective classes. Since this 
was the first time the class was offered, we wanted a small group and advertised that enrollment 
was limited to 12 students. In retrospect we think this suppressed interest. The students worked 
on three projects on healthcare, transportation, and communication that were broadly designed 
and supervised by ESD faculty and senior graduate students. Each project touched upon a 
different critical contemporary issue. A brief description of each project is presented below:  
 

4.1 Stroke Care Chain 
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The objective of the project (see Fig. 3a) was to analyze and then suggest improvements to the 
process of how patients are provided medical care after they suffer a stroke. The students were 
provided with an elementary, executable systems dynamics model in VensimTM (originally 
prepared by a team of MIT and Harvard graduate students that had conducted exploratory work 
on the topic).  
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Figure 3-a: Left – Ischemic Stroke in the Brain, Right – Systems Dynamics model for Stoke Care 

Pathway [5] 
 
The students focused their analysis on the state of North Carolina (Fig. 3b), a state that has a 
10% higher death rate from strokes as compared to the US national average. The students used 
the model to first determine key variables that impact the stroke care process and can lead to 
tangible improvements, and then explored various policy options based on costs and benefits. 
The policy options included deployment of in-field ultrasound technology, increasing staffing of 
stroke care personnel at medical facilities, and increasing awareness through public out-reach 
and education.  

 
Figure 3-b: Population density in NC with overlaid stroke care center locations and 1-hour driving 

distance radii (incorporating urban and rural traffic conditions) showing accessibility of 
population to urgent stroke care [13] 

 

4.2 High-Speed Rail (HSR) and Air Transport Systems Comparison 



	   7	  

 
This project focused on examining environmental impact tradeoffs between high-speed rail and 
air transportation in the US Northeast Corridor. The primary question that was investigated was 
whether high-speed rail (traveling greater than 125 miles per hour) is a more energy and carbon 
efficient alternative (as compared to air transport) in the Northeast Corridor (Fig 4a).  
 
 

  

 
 

Figure 4a. Left – Boeing -737, used for short haul flights, Right – Proposed High-Speed Rail 
Corridors in the US [14] 

 
The team examined future projections of demand for both modes of transportation, and then 
analyzed the associated CO2 emissions of that travel demand as well as emissions associated 
with air and rail infrastructure in the region (see Fig. 4b).  
 

 

 
Figure 4b. Sample Analysis results for CO2 efficiency of rail and air transport options [14] 

 

4.4 The Digital Divide 

Broadband has increased from 8 million in 2000 to 200 million in 2009 in the US, but there are 
still 100 million Americans that do not have broadband. The focus of this project was to 
understand the barriers to broadband adoption in the US, and to identify solutions that may help 
in increasing broadband accessibility. The team analyzed recently released (February 2011) data 
from a large Federal Communications Commissions (FCC) survey (see Fig 5a).  
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Figure 5a. Sample Analysis results for CO2 efficiency of rail and air transport options [15] 
 
The students used R, a statistical package, to compile and visualize the data in order to formulate 
a broadband adoption model. The key task was to explore the social, economic and technical 
factors that contribute to broadband and internet access trends in the US. Fig 5b shows sample 
results and causal-loop diagrams (CLDs) that were built to explain the trends. 
 

 

 
 

Figure 5b: Left – Top barriers to adoption as cited by non-adopters, Right – Causal Loop Diagram 
to explain mobile vs home broadband adoption [15]. 

 
Note to the reader: As this is being written, the semester has just ended. We are grading the 
term projects and await the formal feedback that students routinely provide. Our sense is that the 
students had a positive experience and certainly we did. But we will report soon more formally. 
 
 

5. Summary and Future Directions 
The establishment of MIT’s Engineering Systems Division (ESD) in 1998 was motivated by the 
vision that future solutions for difficult problems will require inter-disciplinary approaches. Over 
the past 13 years, the research and education activities of the division have brought together 
approaches from engineering, management and social sciences to address large-scale, complex 
challenges in new and innovative ways. Building up from its advances in graduate-level teaching 
and research, ESD has increased its efforts towards making substantive and unique additions to 
the undergraduate engineering curricula.  
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Through ESD.00, we have made an initial foray into defining and establishing a new set of topics 
and focus that have largely been missing for undergraduates. In the future, we hope to have this 
course as an established, annually offered class by ESD that is also cross-listed across other 
departments at MIT. Future iterations of the syllabus may add further depth to the topics that are 
introduced (by turning this course into a 12-unit class as opposed to a 9-unit class as it was 
initially offered). We will also explore the possibility of enhancing the real-world awareness 
experience of the students through week-long domestic or possibly international trips.  
 
A key issue that will need to be resolved in future offerings will be its scalability. For larger class 
size, we will revisit the current architecture (of project topics and teams) to ensure it is viable and 
sustainable. In the pre-pilot version, the small class size was easily served by different projects, 
supervised by different staff and graduate students. For larger class size (and varying level of 
staff resources available to the class), we will evaluate the best options for future project setups.  
 
ESD.00 is part of a broader plan to develop over time, a larger suite of undergraduate 
Engineering Systems courses offered by ESD. As additional courses are developed, we expect to 
revise and coordinate the curriculum for ESD.00 in order to provide a well integrated learning 
experience to our students.  
 
Our long-term goal is to make valuable and essential additions to an engineering curriculum, 
including the possibility of a major in engineering systems, for undergraduate students of a new 
generation – a generation that becomes well prepared for successfully meeting the grand 
challenges [16] of its times.  
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