

財團法人國家實驗研究院 國家晶片系統設計中心

A Universal Study Platform for Embedded Software Education

> Kai-Chao Yang, Chih-Ting Kuo, Yu-Tsang Chang, Chien-Ming Wu, Jia-Rong Chang, Chun-Ming Huang, Chin-Long Wey

Outline

- Introduction
- Case Study

– CIC National Project

– The Universal Study Platform

• Learning Experiences

– A Sample Case from Three Domestic Platforms

- Discussion and Conclusion
- References

財團法人國家實驗研究院 國家晶片系統設計中心

National Chip Implementation Center National Applied Research Laboratories

INTRODUCTION

Abstract

- This paper presents the study of experience to promote ESW (Embedded Software) education in Taiwan.
- The case is a national project carried out by CIC.
 - The Universal Study Platform
 - Introduction of three domestic hardware platforms in Taiwan
- The project has great achievements, and students' feedbacks showed the suitability of domestic hardware platforms for ESW educations.

Introduction

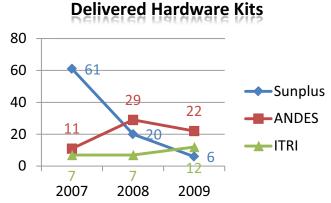
- The importance of embedded systems in industry.
 - Nearly 50% of the 100 biggest companies in Europe have invested in embedded systems research. (in 2009 ICT Results)
- Increasing requirements of the talents of embedded systems.

Introduction

- To promote ESW education, a national project is carried out by CIC.
 - Cultivation of IC design manpower and promotion of IC design technology.
 - Promotion of ESW Education
 - An universal study platform that shares resources for ESW education.
- Under the support of Taiwan government, several platforms have been developed by Sunplus, ANDES, and ITRI in Taiwan.

Introduction

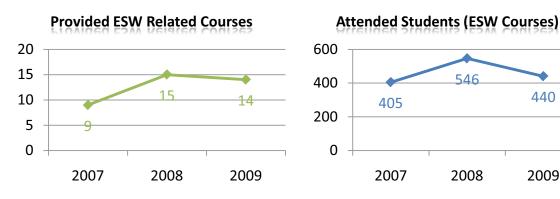
- There is lots of vendors offering different embedded system solutions in different architectures.
- In ESW design courses, students usually need to learn ESW programming using different hardware kits for various applications.
- Problems
 - Software resources of different platforms are dispersive or not public.
 - The specification of every platform is different.


財團法人國家實驗研究院國家晶片系統設計中心

National Chip Implementation Center National Applied Research Laboratories

CIC National Project CASE STUDY

Achievements of the Project


- Providing Hardware Kits to Universities in Taiwan
 - Nearly 300 platforms were provided for projects or courses in universities.
 - Assisting universities in establishing developing environments.
 - Establishing an web-based platform for learning ESW design.

9

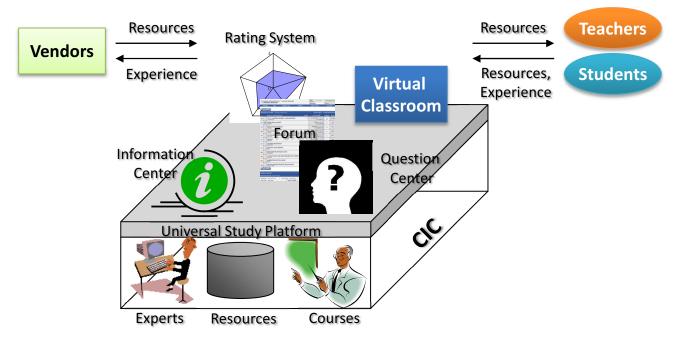
Achievements of the Project

- Establishing Design Samples and Providing Design Databases for Queries from Teachers or Students
 - An universal study platform that providing design resources sharing, suggestion of learning level, virtual classroom, and Q&A is established.
- Providing Training Courses and Conferences
 - 20 short training courses are delivered for about 500 students each year.

Achievements of the Project

• Holding Design Contests

- A national ESW design contest was held.
- An international DSP & ESW design contest is held every year.



2010 IC Design Contest (2010 Apr. 28 ~ 30 in CIC)

The Universal Study Platform

 The universal study platform can be viewed as an unified window between learners, vendors, and CIC to learn hardware platforms.

The Universal Study Platform

- A centralized database that collected dispersed resources together.
 - Collections of documents and design samples of all hardware kits.
 - Source from manufacturers, CIC, students, and the Internet.
- A forum to share experience and feedback.
 - User Feedback
 - Discussion of Learning Experience
 - Sharing of Design Samples and Design Ideas

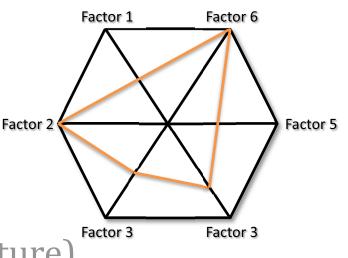
The Universal Study Platform

• An open rating system of hardware platforms.

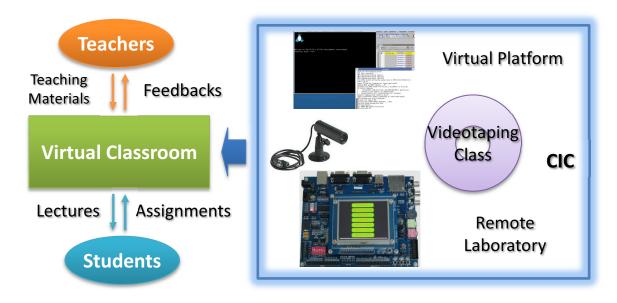
 Suggestion of the learning level of every hardware platform

- A virtual classroom and laboratory for students.
 - Online Courses
 - Virtual Lab
- Q&A Service

– Problem Queries of Hardware Kits



- The factors that benefit students to learn a hardware platform.
- The Universal Platform suggests learning indices for reference according to some criteria.
- A student can select a suitable platform corresponding to his requirements and degree according to the learning indices.


- **Criteria of Learning Level**
- Degree of Transparency
- Number of Design Samples
- BSP (Board Support Package)
- User Rating
- Others
 - ISA (Instruction Set Architecture)
 - Peripherals
 - Hardware Components

Virtual Classroom

Online Courses

- Video Clips
- Handouts
- Virtual Laboratory
 - Virtual Platform for Students to Practice

17

財團法人國家實驗研究院國家晶片系統設計中心

National Chip Implementation Center National Applied Research Laboratories

Three Domestic Platforms

LEARNING EXPERIENCES

Features of the Domestic Platforms

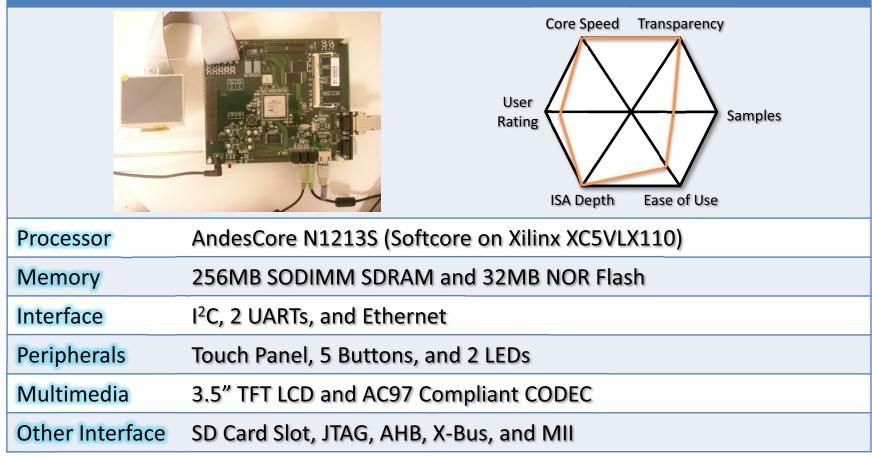
Platform	Learning Level	Features
G SUNPLUS	Low	16/32-bit Mixable ISA
		Rich Peripherals
		MPEG-4/JPEG Hardware Accelerator
Medium	16/32-bit Mixable ISA	
	Medium	High Speed Micro Processing Unit
		Comprehensive Integrated Development Environment
		Full-Integrated All-Around Emulator
		Large Memory Size
		MPU + DSP (Heterogeneous Dual-Core)
工業技術研究 Industrial Technology Research Institute	究院 High	Dynamic Voltage and Frequency Scaling Unit (DVFS)
		H.264 Hardware Accelerator

Applicable Cases of the Domestic Platforms

	Platform	Applicable Cases
		Low-Power Device, Controller
SUNPLUS	Sensor, Robot	
	Small Household Appliance, Game Console	
ANDES	High-Complexity Computation or Analysis	
	Netbook, Mini Computer, E-Book	
	Surveillance Computer	
工業技術研究院 Industrial Technology Research Institute	Multi-Task Processing	
	工業技術研究院	Real-Time Multimedia Coding
		Power Management
		PDA, Smart Phone, DVR

Key Learning Areas of the Domestic Platforms

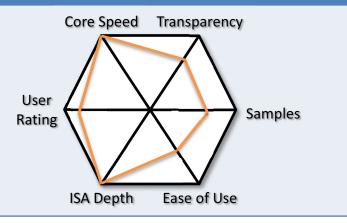
Platform	Key Learning Areas
SUNPLUS	Peripheral Controlling Programming
	Non-OS Device Driver Programming
	Peripheral Controlling
ANDES	OS Kernel Programming
	General-Purpose OS Programming
	Proposed Platform Prototyping
	Digital Signal Processing
工業技術研究院 Industrial Technology Research Institute	Multi-Thread Programming
Research institute	Hardware Accelerator Controlling


Learning Indices of Sunplus SPCE3200

Sunplus SPCE3200 **Core Speed** Transparency User Samples Rating **ISA** Depth Ease of Use Processor Sunplus S⁺core Memory 128Mb SDRAM, 64Mb NOR Flash, and 128Mb NAND Flash Interface SPI, SIO, I²S, I²C, UART, USB, Ethernet, and GPRS Peripherals Joystick, Touch Panel, 3 Buttons, and 3 LEDs **Multimedia** TV Out, 3.5" TFT LCD, CMOS Camera, and Audio CODEC Other Interface SD Card Slot, SJTAG, and GPS

Learning Indices of ANDES ADP-XC5FF676

ANDES ADP-XC5FF676



23

Learning Indices of ITRI PAC Duo

ITRI PAC Duo

Processor ARM926EJ-S + PACDSP V3X

Memory 128Mb SDRAM, 128Kb SRAM and 128Mb NOR Flash

Interface IrDA, SIO, I²S, I²C, UART, USB, and Ethernet

Peripherals Touch Panel, Buttons, and LEDs

Multimedia 4.3" TFT LCD and AC97 Compliant CODEC

Other Interface SD Card Slot and AHB

財團法人國家實驗研究院國家晶片系統設計中心

National Chip Implementation Center National Applied Research Laboratories

DISCUSSION AND CONCLUSION

Discussion

• A Guide for Hardware Selection

 The Universal Study Platform provides a clearer way for hardware selection.

Students' Experience

- The learning level that we suggested can correspond to students' requirements.
- The platforms are suitable for the students to learn embedded software design.

Conclusion

- An Experience of Promoting ESW Education in Taiwan
 - An universal study platform that shares resources for ESW education was established by CIC.
 - The platform integrates software resources of many hardware kits and suggests a learning level for each hardware kit.
 - Example: Three domestic hardware kits are introduced in the project.

Conclusion

- An Experience of Promoting ESW Education in Taiwan
 - From the experience of students and teachers, the domestic hardware kits are suitable for ESW education.
 - Other hardware kits can also be used in the proposed platform. A student can select the most suitable hardware kit using the information of learning level / indices.

References

- 1. ICT Research, "ICT and innovation: From micro-chips to macro-solutions," in ICT Results, 2009.
- 2. S. H. Kim and J. W. Jeon, "Introduction for Freshmen to Embedded Systems Using LEGO Mindstorms," in IEEE Transactions on Education, 2009.
- 3. D. T. Rover, R. A. Mercado, Z. Zhang, M. C. Shelley, and D. S. Helvick, "Reflections on Teaching and Learning in an Advanced Undergraduate Course in Embedded Systems," in IEEE Transactions on Education, 2008.
- 4. J.-S. Chenard, Z. Zilic, and M. Prokic, "A Laboratory Setup and Teaching Methodology for Wireless and Mobile Embedded Systems," in IEEE Transactions on Education, 2008.
- 5. J. O. Hamblen, "Using a Low-Cost SoC Computer and a Commercial RTOS in an Embedded Systems Design Course," in IEEE Transactions on Education, 2008.
- 6. S. Nooshabadi and J. Garside, "Modernization of Teaching in Embedded Systems Design-An International Collaborative Project," in IEEE Transactions on Education, 2006.

財團法人國家實驗研究院國家晶片系統設計中心

National Chip Implementation Center National Applied Research Laboratories

THANKS FOR YOUR ATTENTION