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Abstract – This work is an illustrated application of tensor calculus in conjunction with a CAS (computer algebra sys-
tem) in our case MAPLETM. As an example we treat a problem pertaining to the field of thermoelasticity, which in turn
belongs to the larger class of continuum mechanics problems. As a first step of our deductive approach the governing
equations are derived and after introducing an adequate metric the problem is made accessible to a solution procedure. In
this step we use the CAS to build the terms of the resulting Lamé-Navier equation in appropriate coordinates. We avoid
the use of built-in functions in the CAS and show how the terms can be assembled. The solution of the resulting differential
equation is carried out in two ways. First an analytical solution is obtained by means of the CAS. Second a numerical
solution is computed by using the FEM (finite element method). This method is today a standard technique for solving
partial differential equations (PDE) in physics and engineering. It should be pointed out that this example problem is also
calculable by hand. However, in more complicated cases CASs or the FEM are the only possibility to solve such a problem.
Today CASs are useful tools for physicists and engineers in everyday life. Therefore, the introduction of such tools in the
education of engineers should be promoted.

Index Terms – computer algebra system, continuum mechanics, differential equations, numerical methods, tensor cal-
culus.

Introduction
When we try to represent the nature by physical laws we introduce an adequate coordinate system. In this coordinate system
we set up equations which should describe the process. The most fundamental postulate is that the content of a physical
law is the same regardless of which reference frame is chosen for the description. It is the chief aim of tensor calculus to
investigate the transformation behavior of physical quantities when we change from one coordinate system to another. The
originators of tensor calculus are Ricci and Levi-Civita [1]. With their work they defined the tensor calculus as systematic
branch of mathematics in the late 19th century. Before that the mathematicians Gauss, Riemann and Christoffel introduced
the concept of tensors in the development of differential geometry. One of the first extensive and most powerful application
of Ricci’s calculus (e.g. tensor calculus) was Einstein’s general theory of relativity [2].
With this work the advantage of formulating physical equations especially in continuum mechanics with the tensor formal-
ism will be shown. If we can express an equation in tensor form we can write it in every other coordinate system. The
extensive calculations which are arising are done with a CAS (computer algebra system), in our case MAPLETM. With this
approach it is possible to concentrate on concepts and not on time consuming number crunching. The notation used in this
work is the same as in [3] and [4].

Theoretical foundations
In this section the basic equations of linear thermoelasticity are developed and formulated in tensor notation. A good
overview about thermoelasticity is given in [5] or in [6], but they use only vector notation or Cartesian tensor notation.
General tensor notation is used in [4] and [7]. First the kinematic relations are formulated in curvilinear coordinates. The
equation of motion is shown and specialized for the static case. Particular attention is paid to constitutive equations. The
constitutive equation for linear elasticity e.g. Hooke’s law is given in general form. Then it is expanded to thermoelasticity
by application of the Duhamel-Neumann relation. After presenting the theoretical basis a special application is shown. A
thermomechanically loaded cylindrical specimen is investigated and the solution of this problem is given in an analytical
and a numerical way. The analytical computations could be done manually or in this work by a CAS, here MAPLETMV10.
An overview about the functionality is given in [8]. For the numerical solution the FEM (finite element method) is used,
which is a standard method to solve partial differential equations. In this work the finite element system ABAQUS V6.6 [9]
is used.
The location of a point P in a three-dimensional space is described by the curvilinear coordinates Θk and the time t. The
motion of a body is defined by the mapping

xi = xi(X j(Θk), t) and by the inverse mapping X i = X i(x j(Θk), t) with i, j,k = 1 . . .3. (1)
The first one is called material or Lagrange description and the second one spatial or Eulerian description of the motion.
The differentials of the X i and xi are given by

dX j =
∂X j

∂Θi dΘ
i = X j,i dΘ

i = GidΘ
i, and dx j=

∂x j

∂Θi dΘ
i = x j,i dΘ

i = gidΘ
i, (2)

where Gi and gi are the covariant bases. In this work the Einstein notation is applied, for example ψ = xiy j means

ψ =
n∑

i=1
x1y1 + x2y2 . . .xnyn. For the partial derivative of a quantity with respect to the coordinates the notation (...),k is used.

Uppercase characters refer to the reference configuration, whereas lowercase characters denote the current configuration.
The square of the infinitesimal line element in the undeformed reference configuration is

dS2 = Gi jdX idX j, and in the deformed configuration ds2= gi jdxidx j. (3)
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In the former equation the covariant metric coefficients Gi j = Gi ·G j, gi j = gi · g j are introduced. With the difference of
the squared infinitesimal line elements it is possible to define a variable which can be used to describe the deformation of
the body

ds2−dS2 = gi jdxidx j−Gi jdX idX j respectively ds2−dS2= 2Ei jdΘ
idΘ

j. (4)
The quantity which is used to describe the deformation in the reference configuration is the Green-Lagrange deformation
tensor. It is defined by

E = Ei jGi⊗G j and the components of this tensor are Ei j =
1
2

(
gi j−Gi j

)
. (5)

Now the physical meaning of the Green-Lagrange deformation tensor is clear. It is the difference between the metric of the
current configuration and the reference configuration. Therefore Ei j is a suitable quantity to describe the deformation of a
material body. If there is no difference in the metric, i.e., gi j = Gi j and Ei j = 0 then the body is called rigid. In a deformed
body the location of material point is described by

x = X+u or in components xi(Θk, t) = X i(Θk, t)+ui(Θk, t) (6)
The quantity ui is the displacement vector. From (6) the curvilinear basis follows by differentiating with respect to the
coordinates Θk.

gi = Gi +u,i. (7)
For the coordinates of the metric tensor

gi ·g j = gi j, gi j= Gi j +Gi ·u, j +G j ·u,i +u, j ·u,i (8)
The displacement vector and its derivative is

u = ukgk, u, j= uk| j gk (9)
where the notation (...)|k is introduced for the covariant derivative. This result can be substituted in (5) for the Green-
Lagrange tensor

Ei j =
1
2

(
gi j−Gi j

)
, Ei j=

1
2

(
δ

k
i uk| j +δ

k
j uk|i +gkluk|i ul | j

)
, Ei j =

1
2

(
ui| j +u j|i +uk|i uk| j

)
(10)

where δ k
j is the Kronecker delta. In the linearized theory of elasticity the quadratic terms in (10) are neglected and there is

no disagreement between the deformed and the undeformed configuration. From the Green-Lagrange tensor the linearized
deformation tensor follows as

εi j =
1
2

(
ui| j +u j|i

)
(11)

The second part is the derivation of the equation of motion. From Newton’s second law for a continuum we get∫
S

dS t i +
∫
V

dV ρbi = ∂t

∫
V

dV ρvi (12)

with the density ρ the body force bi and the velocity vi. This is the global form or integral form of the equation of motion.
The stress vector t i can be expressed in terms of the Cauchy stress tensor σ i j by t i = σ jin j. This relation is called Cauchy’s
lemma. It can be shown that the stress tensor σ i j is symmetric (σ i j = σ ji). This is direct result from the postulate of
conservation of angular momentum. (Cauchy’s second equation of motion, deduced by L. Euler). With the divergence
theorem of Gauss it is possible to rewrite the equation of motion. The surface integral can be expressed by a volume
integral and the stress vector by the stress tensor.∫

V

dV (σ ji|i +ρb j−ρ∂tv j) = 0. (13)

Equation (13) must be true for each volume. Therefore we get with v = u̇ the local form or differential form of the equation
of motion as

σ
i j| j + f i = ρ üi. (14)

The final necessary part is a relation between the stresses and strains. Such a relation is called constitutive equation. The
development of constitutive equations for different kinds of materials is one of the major tasks in materials science and
computational mechanics. In the field of linearized elasticity the constitutive equation is called Hooke’s law and it is given
by

σ
i j = E i jkl

εkl . (15)
The tensor E i jkl is of fourth order and is called material or elasticity tensor. Due to the symmetry condition of the Cauchy
stress tensor, the number of components in the elasticity tensor is reduced form 81 to 21. If we deal with an isotropic
material then only two constants are necessary to describe the material behavior. These constants are the Young’s modulus
E (modulus of elasticity) and the Poisson ratio ν . For further derivations it is useful to introduce the shear modulus G

G =
E

2(1+ν)
. (16)

The complete set of field equations in the theory of linear elasticity are

εi j =
1
2

(
ui| j +u j|i

)
, σ

i j| j + f i= ρ üi, σ
i j = G

(
gikg jl +gilg jk +

2ν

1−2ν
gi jgkl

)
εkl , εi j|kl eikme jln= 0. (17)

These equations are called kinematic relation (17.1), equation of motion (17.2), constitutive law (17.3) and the compatibility
conditions (17.4). The symbol eikm in the last equation is the Levi-Civita symbol, also called the permutation symbol. e is
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1 if (i,k,m) is an even permutation of (1,2,3), −1 if it is an odd permutation, and 0 if any index is repeated. The number
of variables in this set of 15 partial differential equations is also 15 (6 components of the symmetric strain tensor εi j, 6
components of the symmetric stress tensor σ i j and 3 components of displacement vector ui ). With this set of equations it
is possible to describe small motion and equilibrium of an elastic body. In the case of elastostatics the equation of motion
reduces to

σ
i j| j + f i = 0. (18)

In this paper we are interested in static problems of thermoelasticity. To investigate such problems we have to extend the
constitutive law from linear elasticity to linear thermoelasticity. In the field of thermoelasticity the constitutive relation
(17.3) has to be extended to take into account the thermal expansion effects. The resulting relation is

σ
i j = E i jkl(εkl−α

i j
θ). (19)

This equation is the inverse form of the so called Duhamel-Neumann relation. In this relation the second-rank tensor α i j

is called thermoelasticity tensor. In the linearized theory of thermoelasticity we assume that E i jkl is not a function of
temperature T and that α i j is not a function of εkl [10]. The number of independent entries in α i j depends on the degree
of anisotropy of the material. For example if we deal with an orthotropic material we need only the components α i j in the
principal directions. The simplest material is the isotropic one, for which the derivation of the Duhamel-Neumann relation
is shown. The main idea is that the total strain εtot can be decomposed in a mechanical strain εmech and a thermal strain
εtherm.

ε
i
j (tot) = ε

i
j (mech) + ε

i
j (therm), where ε

i
j (therm) = αT θδ

i
j with θ = T −T0. (20)

It is common to use absolute temperatures and to set T0 = 0, and θ = T . In order to take the thermal strains into account
we have to reformulate the constitutive equation which gives after some manipulations

σ
i
s =

E
1−ν

(
ε

i
s +

ν

1−2ν
δ

i
sε

k
k

)
and from this we get with δ

i
i = 3, σ

i
i =

E
1−2ν

ε
i
i . (21)

With this result it is possible to compute ε i
j. Adding the thermal strain gives the final expression often called inverse Hooke’s

law for ε i
j in terms of the mixed stress tensor σ i

j and the elastic constants E and ν

ε
i
j =

1
2G

(
σ

i
j−

1
1+ν

σ
m
m δ

i
j

)
+αT T δ

i
j. (22)

This equation is the Duhamel-Neumann relation for a mechanically and thermally homogeneous isotropic body. Inversion
of (22) gives

σ
i j =

E
1+ν

(
ε

i j +
ν

1−2ν
ε

m
m gi j− 1+ν

1−2ν
αT T gi j

)
. (23)

It is possible to reduce the set of field equations (17.1) – (17.3) to three partial differential equations for the displacement
field u and the temperature T . This is done by building the covariant derivative of the constitutive law and and inserting
it together with the kinematic relation into the equation of motion. The resulting set of equations is called Lamé-Navier
equations

µui| jj +(λ + µ)u j|ij −(3λ +2µ)αT T |i= 0 (24)
The parameters λ ,µ are called Lamé-Navier parameters. Some useful relations between these parameters are

λ =
νE

(1+ν)(1−2ν)
, µ =

E
2(1+ν)

= G, E =
µ(3λ +2µ)

λ + µ
, ν =

λ

2(λ + µ)
. (25)

Now we can start to solve the problem. The problem is formulated in cylindrical coordinates, where the location of a point
P with respect to a Cartesian basis ei is in given by

r = r cosϕ e1 + r sinϕ e1 + ze3 (26)
This is shown in figure 1 where also the coordinate surfaces are shown. The covariant basis gi is defined by

gi =
∂r

∂Θi = ∂Θir so the basis vectors are: g1 = cosϕ e1 + sinϕ e2, g2 =−r sinϕ e1 + r cosϕ e2, and g3 = e3. (27)

The covariant and contravariant metric coefficients are defined by
g = gi jgig j and g = gi jgig j. (28)

In cylindrical coordinates the nonvanishing metric coefficients are

g11 = g33 = 1, g22 = r2 and g11 = g33 = 1, g22 =
1
r2 . (29)

With the metric defined by (28) it is possible to derive the Christoffel symbols. The symbols are defined by

gl,m = Γ
k
lmgk, and in terms of the metric coefficients Γ

k
lm =

1
2

gkn
(

gmn,l +gnl,m−glm,n

)
. (30)

In cylindrical coordinates there exist only three nonvanishing Christoffel symbols. These are

Γ
1
22 =−r, Γ

2
12 = Γ

2
21 =

1
r
. (31)

In (31) the symmetry condition of the Christoffel symbols with respect to the lower indices is used. The Lamé-Navier equa-
tions in cylindrical coordinates can now be formulated. For the further solution procedure only the equation in r−direction
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e3
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eϕ

ez

r

r
ϕ

z

P (x, y, z)

P (r, ϕ, z)

(a) (b)

FIGURE 1
(a) Cylindrical coordinates r,ϕ,z with basis vectors er,eϕ ,ez and Cartesian coordinates x,y,z with basis vectors e1,e2,e3; position vector r of point
P(r,ϕ,z) or P(x,y,z);
(b) Coordinate Surfaces, r = const. blue, ϕ = const. red, z = const. green

expressed in physical components will be considered here.

(λ + µ)∂r

(
1
r

∂rrur +
1
r

∂ϕ uϕ +∂zuz

)
+ µ

(
∂rrur +

1
r

∂rur +
1
r2 ∂ϕϕ ur +∂zzur − ur

r2 −
2
r2 ∂ϕ uϕ

)
− (3λ +2µ)α∂rTr = 0. (32)

The detailed derivation of the three partial differential equations is given in the MAPLE worksheet in the Appendix.

Problem
In figure 2 a sketch of the analyzed problem is given. The stress-, strain- and displacement-fields in a circular disc or
cylinder loaded by a radial temperature distribution are investigated. Dependent on the ratio of thickness d to radius R a
plane stress or plane strain state is present in the body. Additionally the geometry and the properties of the isotropic linear
elastic material (Youngs’modulus E, Poisson ratio ν and the coefficient of thermal expansion α) are given in this sketch.
From the Lamé-Navier equations the differential equation for the radial displacement u(r) is obtained. Due to symmetry

R

r

d

T (r)

E, ν, α
x

z
d
R ≪ 1 . . . plane stress
d
R ≫ 1 . . . plane strain
d
R ≈ 1 . . . 3-D-state

E = 2.1 · 105 N/mm2

ν = 0.3

α = 12 · 10−6 1/K

R = 11.25 mm

d = 1 mm

stress and strain free state at T ⋆ = 273.15 K

FIGURE 2
Circular disc or cylinder with radial temperature distribution; geometry boundary conditions and material properties.

conditions the partial differential equation (32) is transformed to an ordinary differential equation

(λ +2µ)dr

[
1
r

dr(rur)
]

= (3λ +2µ)αdrT, or dr

[
1
r

dr(rur)
]
= α(1+ν)drT. (33)

If the solution for the plane strain case is of interest, the variables E,ν ,α have to be replaced by E1,ν1,α1. These variables
are

E1 =
E

1−ν2 , ν1 =
ν

1−ν
, and α1 = α(1+ν). (34)
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To solve the linear differential equation (33) for the displacement u(r) it has to be integrated twice. The general solution of
(33) for the radial displacement is given by

u(r) = α
(1+ν)

r

r∫
0

dr′ T (r′)r′+C1r2 +C2. (35)

From the stress boundary conditions the constants of integration can be determined. The displacement field is connected
with the stress field via Hooke’s law and the strain displacement relations. The six components of the Cauchy stress tensor
are reduced to three because we are dealing with a two-dimensional plane stress problem. These stresses are two normal
components and one shear component. These are

σrr =−αE
r2

r∫
0

dr′ T (r′)r′+
C1E
1−ν

− C2E
r2(1+ν)

, σϕϕ =
αE
r2

r∫
0

dr′ T (r′)r′−αET (r′)+
C1E
1−ν

+
C2E

r2(1+ν)
, σrϕ = 0. (36)

Due to the fact that the cylindrical surface must be traction free, the stress σrr must satisfy the following conditions
σrr(a) = 0, σrr(0) 6= ∞. (37)

Inserting those in (36) yields the solution of the considered thermoelastic problem

σrr = αE

 1
R2

R∫
0

dr T (r)r− 1
r2

r∫
0

dr′ T (r′)r′
 , σϕϕ = αE

 1
R2

R∫
0

dr T (r)r +
1
r2

r∫
0

dr′ T (r′)r′−T (r)

 ,

ur =
α

r

(1−ν)
( r

R

)2
R∫

0

dr T (r)r +(1+ν)

r∫
0

dr′ T (r′)r′
 . (38)

When the radius is zero the expression for the stresses and displacement becomes indetermined. If there is no singularity
in the temperature distribution at r = 0 the integrals can be computed without a problem. The stresses at the position r = 0
can be determined by application of l’Hôpital’s rule to the limits

lim
r→0

1
r

r∫
0

dr′ T (r′)r′ = 0, lim
r→0

1
r2

r∫
0

dr′ T (r′)r′ =
1
2

T (0) so that σrr(0) = σϕϕ(0) = αE

 1
R2

R∫
0

dr T (r)r− 1
2

T (0)

 .

(39)
The integrals in the general solution (38) can be evaluated straightforward by hand or by the help of a CAS. If a CAS is
applied for this task the field variables are obtained in a very quick way. For example an instructor could show this in his
lecture online. So it is easy for students to get an impression how different loading conditions influence the solution.

Analytical solution
The following boundary conditions were investigated: (1)T is constant, (2)T is a linear function of radius r and, (3) T is a
Gaussian function dependent on radius r.

Case 1, T (r) = const.

The temperature is
T (r) = T0, T0 = 723.15K (40)

and therefore the integrals in (38) can easily be evaluated. For the stresses and the displacement the following expressions
are achieved

σrr = 0, σϕϕ= 0, ur = rαT0. (41)
In figure 3.1 the radial stress σrr, circumferential stress σϕϕ and the radial displacement ur are plotted as a function of
radius r.

Case 2, T (r) = f (r)

In this case the temperature is a linear function of the radius. It is given by

T (r) = T0− T0−T1

R
r T0 = 723.15K and T1 = 393.15K. (42)

Substitution of this function and solving the integrals in (38) results in

σrr =−αE
3R

(T0−T1)(R− r), σϕϕ =−αE
3R

(T0−T1)(R−2r) and (43)

ur =
αr
3R

{
T1 [r +R+ν(r−R)]+T0 [2R− r +ν(R− r)]

}
. (44)

In figure 3.2 the radial stress σrr, circumferential stress σϕϕ and the radial displacement ur are plotted as a function of
radius r.
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Case 3, T (r) = f (r)

The temperature is now a Gaussian function of the radius. This distribution is described by

T (r) = T0
1√
2π

e−cr2
+T1 with T1 = 448.15K, T0 = 1285.65K and c = 2 1/mm2. (45)

The constant c in the exponent of (45.1) has the dimension 1/m2. Substitution of this function into the general solution (38)
and evaluation of the integrals gives

σrr =
1

2
√

2π

αET0

R2r2c

[
r2(1− e−cR2

)−R2(1− e−cr2
)
]
,σϕϕ =

1
2
√

2π

αET0

R2r2c

[
r2(1− e−cR2

)+R2(1− e−cr2
)−2R2r2ce−cr2

]
,

ur =
α

4cr
√

π

[
(1+ν)(T0

√
2−T0

√
2e−cr2

+2T1cr2√
π)+(1−ν)r2 T0

√
2−T0

√
2e−cR2

+2T1cR2√π

R2

]
. (46)

In figure 3.3 the radial stress σrr, circumferential stress σϕϕ and the radial displacement ur are plotted as a function of
radius r.

FIGURE 3
Analytical solution; radial stress σrr , circumferential stress σϕϕ and radial displacement ur as a function of radius r for the three investigated temperature
distributions T (r)

Numerical solution
The numerical model is analyzed by the finite element method (FEM). For the analysis the commercial Code ABAQUS
V6.6 is used. A detailed description of the functionality of this general purpose FEM code is given in [9]. The reason
why the problem is solved by this method is to show the connection between numerical an analytical calculation tools in
engineering education and engineering life. It is often possible to develop an analytical approximation for a problem. If
such an approximation is available the numerical solution can be verified.

Finite element model

The symmetry of the circular domain is used. The model is meshed with CAX8T elements. This abbreviation means:
continuum-type, 8-node axisymmetric thermally coupled quadrilateral, biquadratic displacement, bilinear temperature ele-
ment. The boundary condition for the temperature is modeled via the ABAQUS user-subroutine disp.f. With this subroutine
it is possible to define a temperature field dependent on the coordinates. The subroutine is written in FORTRAN90 and the
source code is available from the authors’ website http://institute.unileoben.ac.at/mechanik/.
In the case of a constant temperature distribution there is no user subroutine necessary, but it is also implemented for conve-
nience. The postprocessing of the numerical results was performed in ABAQUS-CAE, with the help of a global cylindrical
coordinate system. This system has the same origin as the global Cartesian coordinate system. ABAQUS-CAE performs a
coordinate transformation of the results from the Cartesian to the cylindrical system, and writes the data in tabular ASCII
coded files. It is also possible to create contour and symbol plots or animations with this postprocessor. The authors use
this functionality in their lectures about continuum mechanics, tensor calculus and finite element methods.

Case 1, T (r) = const.

In figure 4.1 the results from the numerical calculation for case 1 are shown. There is no observable difference between the
analytical and the numerical solution.

Case 2, T (r) = f (r)

Figure 4.2 shows the results for case 2. The temperature varies linearly with the radius from the origin to a point on the
circumference. For this temperature distribution the numerical computation gives also the same result as the analytical one.
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There is no disagreement detectable between those two solutions.

Case 3, T (r) = f (r)

Figure 4.3 shows the result for case 3. In this case the temperature varying like a Gaussian function from the midpoint to a
point on the circumference. A comparison of the analytical solution (figure 3) with the numerical one shows that there is
also no identifiable disagreement between them.

FIGURE 4
Numerical solution; radial stress σrr , circumferential stress σϕϕ and radial displacement ur as a function of radius r for the three investigated temperature
distributions T (r)

Conclusions
1. The basic equations of linear thermoelasticity were developed and formulated in tensor notation, so they can be

written in any coordinate system when the metric of this system is defined.

2. The basic equations of linear thermoelasticity were reduced to the Lamé-Navier equations specialised for cylindrical
coordinates and written in physical components.

3. As an application of linear thermoelasticity, the problem of a thermally loaded cylindrical specimen was formulated
and solved analytically. The basic equations of this problem were developed for plane strain and plane stress con-
ditions. In this work the plane stress case was investigated. For three different boundary conditions the analytical
solution was calculated and later compared with a numerical solution.

4. In this work a CAS is intensively used which takes care of all the time consuming calculations related to the tensorial
formulation of the problem were done with it. It is clear that a lecturer should use such a tool if he is interested in pre-
senting the concepts of tensor calculus and continuum mechanics. The necessary tensor operations are programmed
in the CAS environment. Solutions of differential equations or evaluation of integrals are also performed with the
CAS.

5. It is shown that with the aid of a CAS it is possible to examine different boundary conditions in very short time.
Therefore students could get quickly an impression how equations and their solutions behave. One of the most
striking benefits is that it is possible to solve different cases in a short time. The saved time that way can be used for
discussions of the results in classroom.

References
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Derivation of the Lamé-Navier equation in cylindrical coordinates with MAPLE TM

The Lamé-Navier equation in cylindrical coordinates are derived in two different MAPLE TMworksheets. First the stan-
dard MAPLE TMpackages are used. After the calculation of the basic quantities the special operators in the Lamé-Navier
equation are developed and expressed in physical components. In the second worksheet the MAPLE TMvector calculus
package is used. With this package it is possible to study the calculus of vectors in many different predefined coordinate
systems. For example Cartesian-, cylindrical-, spherical-, conical-, polar-, bipolar-coordinates can be used. For details
see the documentation [8]. It should be noted that the calculations are much shorter compared to the first approach, but it
is not possible to look deep inside the mathematical and physical structure of the equations. However it depends on the
application and the user which method is preferred. Another point concerning tensor calculus and MAPLE TMshould be
mentioned. In MAPLE TMthere exists a special package for calculations with tensors. The package was developed to solve
problems from the general theory of relativity. Therefore special routines are implemented to perform complex calculations
in a short way. If a special metric is defined, it is possible to evaluate the covariant metric tensor, contravariant metric
tensor, determinant of metric tensor components, Christoffel symbols, Riemann tensor, Ricci tensor, Ricci scalar, Einstein
and Weyl tensors etc. by one command.

Excerpt of the MAPLE TM-worksheet
> ################################################################

> # Lame-Navier differential equation in cylindrical coordiantes #

> ################################################################

> restart;

> with(LinearAlgebra):

> # dimension of space, equations of the coordinate lines

> ndim:=3;

ndim := 3
> x[1]:=Theta[1]*cos(Theta[2]);

x1 := Θ1 cos(Θ2)
> x[2]:=Theta[1]*sin(Theta[2]);

x2 := Θ1 sin(Θ2)
> x[3]:=Theta[3];

x3 := Θ3
> assume(Theta[1],positive);

> assume(Theta[2],positive);

> # covariant basis #

> i:=0:

> for i from 1 to ndim do
> g[i]:= < diff(x[1],Theta[i]), diff(x[2],Theta[i]),> diff(x[3],Theta[i]) >:

> end do;

g1 :=

"
cos(Θ˜2)
sin(Θ˜2)

0

#

g2 :=

"
−Θ˜1 sin(Θ˜2)
Θ˜1 cos(Θ˜2)

0

#

g3 :=

"
0
0
1

#
> # covariant metric coefficients

> g_cov:=array(symmetric,1..ndim, 1..ndim);

g cov := array(symmetric, 1..3, 1..3, [])
> i:=0: j:=0:

> for i from 1 to ndim do

> for j from 1 to ndim do

> g_cov[i,j]:=simplify(DotProduct(g[i], g[j]));

> od;

> od;

> print(‘covariant metric coefficients=‘,g_cov);

covariant metric coefficients =,

"
1 0 0
0 Θ˜1

2 0
0 0 1

#
The complete MAPLE TM-worksheets can be downloaded from the authors’ homepage
http://institute.unileoben.ac.at/mechanik/. There is also a detailed derivation of the Lamé-Navier equations in general co-
ordinates and especially in cylindrical coordinates available. Additionally the ABAQUS-input file an the Fortran coded
User-subroutine is available there.
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