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Abstract  The trapezoidal rule and Simpson’s rule are common numerical techniques for approximate integration to 
be used when the function to be integrated (a) is given in analytical form, having an impracticable or unknown integral 
or  (b) is given as values available only at a certain, limited number of points, usually equidistant — as will be dealt with 
in this study —, such as in tabular form, or, equivalently, values supplied by a computer program.  We present simple 
formulas to make those rules easier when it is necessary to produce tables for lookup, typically calculated in a computer, 
tables from which graphs of the integral can also be made.  Although these and other rules are generally taught 
everywhere in technological curricula, and are explained in innumerable books as applied to the integral from a to b, 
both given, we have found no description for the case where the abscissa varies in a range — say, from a to x, with 
a ≤ x ≤ b —, which permits to build tables and is necessary, namely, to produce graphs.  This problem appears also to be 
adequate for pedagogical purposes.  We address the problem for equidistant points of the independent variable, with a 
description easy to transcribe into a computer language, and illustrate it with the computation of the volume of a 
spheroid.  A mention is made to the approximate estimate of the errors through finite differences, in the absence of the 
analytical form of the integrand. 
 
Index Terms  numerical integration, Simpson’s rule, tabular form, trapezoidal rule. 

FUNDAMENTALS AND SCOPE  

Numerical integration is a tool making it possible to compute a definite integral when the function, i.e., the integrand 
(considered here univariate), is not practicably integrable.  This difficulty arises in one of the following cases:  (a) the 
function, given analytically, has an impracticable or unknown integral;  (b) the function is given as a set of values only 
for a certain number of points of the independent variable, usually equidistant points (as addressed in the present study), 
such as in tabular form, or values supplied by a computer program.  The trapezoidal rule and Simpson’s rule are common 
numerical techniques to solve the problem. 

Although the aforementioned rules are generally taught everywhere in technological curricula, and are explained in 
innumerable books —for instance, the one by Greenspan and Casulli [1] or Hämmerlin and Hoffmann [2]—, the only 
case systematically studied is the integral from a to b, both given.  Tables are then profusely constructed but only to show 
that these methods improve, tending to the correct value as the integration step decreases, with the typical limitations of 
machine precision and computing time.  We have, thus, found no description for the case treated here, where the abscissa 
varies in a range, say, from a to x, with increasing x in that range, a ≤ x ≤ b.  This not only permits to build tables for 
lookup —which is nowadays, in the computer age, usually no more indispensable—, but also is necessary to produce 
graphs.  We think that this problem is interesting for pedagogical purposes, namely in technological curricula such as 
Engineering, Economics or Statistics.  Although tables, such as the Gauss integral in Probability, are nowadays 
secondary in view of the availability of computers and calculators, the tables underlie the construction of graphs, and 
these have a definitive pedagogical value.  We address the problem for equidistant points of the independent variable, 
and provide suitable transcription into computer language (pseudo-code), and illustrate its application with the 
computation of the volume of a solid of revolution, an oblate spheroid. 

Examples for numerical integration are common:  (a) the points in Table 1 (which are indeed from {1} with a = 1);  
or  (b) the function given in {2}, which is the Gaussian probability density function.  The unwieldy primitive of {1} was 
obtained through the “Integrator” [3] and is given in {3}.  A complexity such as the one inherent in this case, or higher, 
may discourage the analytical resolution, pointing to a numerical method. 
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x f(x) 

2.0 0.2222 
2.1 0.2047 
2.2 0.1889 
2.3 0.1747 
2.4 0.1619 
2.5 0.1504 

TABLE 1 
TABULATED VALUES OF A FUNCTION FOR INTEGRATION 

In order to compute definite integrals approximately, typical choices are, as mentioned, the trapezoidal rule and, 
more often, the Simpson’s rule, both in the Newton-Cotes family of methods.  When searching the literature for the 
trapezoidal or Simpson’s rule in tabular form, innumerable sources are found, not, however, in the simple sense 
addressed here.  Those sources typically do use tables for a different purpose:  to show that progressively smaller 
integration steps provide better and better approximations (within the limits of computing time and computer arithmetic).  
Although this is an important aspect of these numerical integration techniques, here it will be considered that the 
integration step size (which will be kept constant) has been established, as may be obtained from analytical reasoning or 
from the equidistance of the values in a supplied table with the values of the function for a set of values for the 
independent variable. 

The scope of this study is to present the result of integrating functions, a result to be shown in tabular form, both 
from integrands with an analytical expression and from values in a table, this latter form being of interest for illustration 
purposes or to produce tables and graphs for the integrated function.  In what follows, formulas will be given for the 
trapezoidal rule, then for Simpson’s rule, with an application to the computation of the volume of an oblate spheroid, 
followed by some conclusions. 

TRAPEZOIDAL RULE AND SIMPSON’S RULE 

The trapezoidal rule approximates the integral Y by a sum of trapezoidal areas 
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if Y(a, x) —not Y(a, b)— is sought, for a ≤ x ≤ b, {4} becomes 
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remarking that only the values of x of the form hkaxk +=   (k an integer) are needed.  As n is usually large, it is 

convenient to write {6} in a recursive form, with the obvious value of S0
 = 0: 
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In a numerically simpler way, let D = 2 S: 

 ( )kkkk yyDD ++≅ −− 11  {8}

From {5} and the relation established between D and S, it is 
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So, the procedure begins with computing y0, and continues as follows: 
D0 := 0;  yprev := y0 
for k := 1 to n 
{ x := a + k * h;  y := f(x);  Dk := Dk-1 + yprev + y;  yprev := y} 
Y := D * h / 2 

For Simpson’s rule, the approximation to the integral Y(a, b) is done by the following sum, with n even: 
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For this rule (in a manner parallel to the trapezoidal rule), from {10}, it is 

 kkkkk yyySS +++≅ −−− 122 4  {11}

and 
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Remark that the step is now double the one for the trapezoidal rule. 
The procedure begins with computing y0 and y1, and continues as follows: 

S0 := 0;  ym2 := y0 
for k := 2 to n step 2 
{ ym1 := f(a + (k – 1) * h);  y := f(a + k * h); 

Sk := Sk-2 + ym2 + 4 * ym1 + y;  ym2 := y m1;  ym1 := y} 
Y := S * h / 3 

APPLICATION  

The above procedures are now applied to computing the volume of an oblate spheroid, i.e., an ellipsoid of 
revolution, as approximately the Earth, with polar radius, c, smaller than its equatorial radius, a.  (Thus, with the axis of 
revolution vertical, the height is 2 c and the width 2 a.)  The formula of the spheroid is 
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Introducing 22 yxr += , this becomes 
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The volume of a solid of revolution, V, can be computed by the well-known formula of {15}, 

 ( ) ( )∫−=
z

c
ttrzV d2π  {15}

The volume of the oblate spheroid becomes 
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or, with x = t / c, and introducing a dimensionless v, 
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So, the integrand is 

 ( ) 21 xxf −=  {18}

immediately integrable to 
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This function goes from 0 (for z/c = –1) to 4/3 (for z/c = +1), as expected.  Indeed, the volume of the (whole) 
spheroid is V(c) = (4/3)πa2c, with the particular value (4/3)πa3 for the sphere of radius a. 

i z x = z/c f(x) D Ytrap S YSimp Y 

0 -2 -1 0 0 0 0 0 0 
1 -1,6 -0,8 0,36 0,36 0,036   0,0373 
2 -1,2 -0,6 0,64 1,36 0,136 2,08 0,1387 0,1387 
3 -0,8 -0,4 0,84 2,84 0,284   0,2880 
4 -0,4 -0,2 0,96 4,64 0,464 7,04 0,4693 0,4693 
5 0 0 1 6,60 0,660   0,6667 
6 0,4 0,2 0,96 8,56 0,856 12,96 0,8640 0,8640 
7 0,8 0,4 0,84 10,36 1,036   1,0453 
8 1,2 0,6 0,64 11,84 1,184 17,92 1,1947 1,1947 
9 1,6 0,8 0,36 12,84 1,284   1,2960 
10 2 1 0 13,20 1,320 20,00 1,3333 1,3333 

TABLE 2 
NUMERICAL INTEGRATION 

As f was selected to be analytically integrable, it will be possible to compare the approximate integral with the exact 
values.  Making c = 2, in Table 2 we have the values for the application of the trapezoidal and Simpson’s rules, with Y ≡ v.  
In the table, with an arbitrary h = 0,2, according to the expressions previously deduced, for example for i  = 4, it is: 

From {18}:  f(x = -0,2) = 1 – 0,22 = 0,96 
From {8}:  D4 = D3 + y3 + y4 = 2,84 + 0,84 + 0,96 = 4,64 
From {9}:  Ytrap,4 = D4 h / 2 = 4,64 (0,2 / 2) = 0,464 
From {11}:  S4 = S2 + y2 + 4 y3 + y4= 2,08 + 0,64 + 4 × 0,84 + 0,96 = 7,04 
From {12}:  YSimp,4 = S4 h / 3 = 7,04 (0,2 / 3) = 0,4693 
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FIGURE 1 
GRAPH OF YTRAP AND Y  FROM TABLE 2 

As regards the errors of the two estimates, trapezoidal and Simpson’s rules, it is to be remarked that, with h = 0,2, 
the trapezoidal rule gives a final error of ~0,01 (i.e., |1,320–1,333|) against 0 for Simpson’s rule, precisely 0 because the 
latter is exact for polynomials up to the second degree, as {18} shows is the case.  In FIGURE 1 are shown the 
trapezoidal rule approximation (Y_trap), the exact result (Y, identical to the Simpson results), and the relative error 
(E_trapRel, shown as 0 for the initial value 0) reported to the right-hand side axis (small values), as functions of x. 



International Conference on Engineering Education ICEE-2010 July  18–22, 2010, Gliwice, Poland. 
5 

The estimate of the error cannot be made from the analytical integrand, as already justified, because the derivative is 
supposedly not accessible.  A solution is to compute an approximation to the derivatives, the 2.nd for the trapezoidal rule 
and the 4.th for Simpson’s rule.  This can be easily implemented by computing finite differences, and some results can be 
found on one of the author’s webpages [4]. 

CONCLUSIONS 

The common trapezoidal and Simpson’s rules were presented, so as to facilitate the computation of a numerical integral 
in a tabular form, i.e., for the integral from a to x, with a ≤ x ≤ b, with a and b given, for equidistant points.  This is 
convenient to obtain a table of the integral, useful both for lookup and for its graphical presentation.  An application was 
made to the computation of the volume of a spheroid.  The estimate of the errors is not possible, as an analytical form is 
considered unavailable, but can be obtained by finite differences. 
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