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Abstract - This contribution analyses the classical laws of The result indicates a proportionality of the raifanasses to

motion by means of an approach relating time and
Entropy. Following the major conceptual issues
introduced in the last century by the quantum and
relativistic theories, that profoundly modified our

understanding of mass, time and causality, we argubat

adopting the notion ofchanges of states as opposed to the
usual derivation of Newton’s laws in terms offields, a

broader picture is obtained; for instance, descrippn of

the motion indicates that the act of experimentatin

disturbs the evolution of the system. Moreover, itis

shown that a function of states can be written indrms of

dynamical variables: masses and velocities. Assot@n of

this function to the concept of Entropy follows a
procedure analogous to the derivation of the seconldw

of Thermodynamics, giving rise to a unitary concejual

framework, suggesting an intriguing general picture
where the diverse branches of mechanics turn out tbe

related by a common foundation.
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INTRODUCTION

It has probably occurred to every student of thgsjual
sciences that, apart from the inherent difficultied

the ratio of accelerations, that is:

mavo MgV maVv
M Vi M V2 M Vi

where the pair (n v;) refers to the "light" body whereas the
pair ( M, V) refers to the “heavy” body.
The general representation of the classical exgsrins :

V.
ﬂ =h x._J (1)
m, v,
where h, the “constant of proportionality”, assumes the
valueh= — 1 and, according to Classical mechanics, leads

to the second ;= m;v; ) and to the third lawsK;-- F; ).

However, Figure 1 seems unrealistic once how
could one generate, indefinitely, massgsto experiment
(balance) with M? A distinct view of the Classical
experiment is shown in Figure 2.

Comparing Figures 1 and 2 we note that there is no
place form,, other than on the surface of M, whem is
"falling”. The same is true for any bodg used as a test
body in the presence of M. Thus Figure 1 represents
imaginary or gedankenexperiment, in a pure quantum-

deduction of Newton’s Laws [1-3], there is a lack o Mechanical sense; that is, an experimental proeethat

connection between the original formulation of Glaal

could not be carried out. In other words, the fitars from

Mechanics and the subsequent development of theemod the philosophical qualitative description of facts a

Quantum and Relativistic theories, particularly foemer,
which is formally based on the concept of “statdsao
system” rather than on the notion of times andifeln fact,
the formulation of the Classical Laws of Motion, 8l Isaac
Newton, marked the 17 century transiton from a
philosophical qualitative description of observedtté to a
physical quantitative representation of experimergaults;
in short, it was the birth of controlled laboratanethods.
The primordial experiment of Mechanics [1] follovike
procedure of measurement and repetition and isingidtin

Figurel: a bodym, is abandoned near the proximity of a
body M and the ‘“rate of fall” determined by a time

measurement; however, it is necessary to repeatetste
employing a distinct test body, say .
m ¢ m

FIGURE 1 — The Classical Experiment
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quantitative representation of experimental resulas
inconsistently conducted by Classical mechanicayitg
openthe problem of observation

Now Figure 2 pictures a 3-body problem which, as
far as experimental methods are concerned, is thamum
necessary arrangement to assure consistent restdtsiding
to experimental data, the first and second stageesgi
respectively:

mV . m Ve
M+m, v M+m v,
mY "
© @
M m
Initial Stage First Stage Second Stage

FIGURE 2 — Initial, first and second stages ofalistic Classical
Experiment
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Note that in the results of the experiment pictuied
Figure 2V is the acceleration of the conjunctM(+ m;)
|

and V; the acceleration ofn;; the general representation of

the experiment becomes:
m_[M+m V| v,
m, (M+m V] Vv

According to this the

Q)
relation,

accelerations assumes the value:
M + V.
h= Mrm, -2 4)
M+m V,

Thus, the Classical "free fall" result becomes-body

‘constant  of
proportionality'h between the ratio of masses and the ratio of

Results represented by equations (8) and (10) appea

contradictory; an analogous situation occurs wheayhl is
considered heavier than body 2, that is:

m=m,+oM

In fact, working out this last assumption, we ae Wwith

four distinct results foh = h(a). The additional values are:

(11)
V.
@)= 122
el
; (12)
a)= (- )2
Vl

Relations (8), (10), (11) and (12) represent fostirtt
results for the "same" experiment; however, these reot

experiment andh reveals a dependency on the third part. Aprecisely the same, once addition of a mab8) (to m, is

number of interpretations may result, but we ndtat ta
constant, that is, independence on the masgemdicates
no repetition, or a result based on a single dhtes we will
follow the possibility that the full value df can be obtained
from the analysis of the experimental data.

ANALYSIS OF THE "CLASSICAL" EXPERIMENT

Letm,=m +AMin (4); elimination ofn, gives:

h=M*m+M_ V, 5)
M+m Vi
or
/ 6
h:[l+%}x\é ( )
m Vl
Now, taking M >>m,
h=(1+ 50 )2 7)
Vl
Defining the ratio of masse@ = ——, his given by :
v
h(a)= @+ a)x-2 (8)

Vl
Conversely, elimination afy insteadof m, in equation (4)
gives:

m=m,-M
so thath becomes :
N .
=~ & X \é (9)
M+m,-dM V,
that is, according to the previous definitionopfve have:
1V,

h(a)= ( x—2

1-a) v,

(10)
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physically distinct from subtracting a masd1) from m.

Classical mechanics may argument tHat (a) is
constant, that all values converge to 1; moreosaedirect
experiment relating bodies (M +,nto (M + m) is also
virtual. However, the distinction of experiments is
guaranteed by, not by employing different lesser bodies
andm, in successive stages. A plot of these distinailtess
given in Figure 1.

4,0

/Eq. (10)

351 /

30— 7

251 2

h (@)

FIGURE 3 — Plot of the four distinct results of Bkassical
Experiment

The argument of the Quantum and Relativistic
mechanics could be as follows: the first may arthat the
particular value h(a) assumes is irrelevant, since this
function is not an observable. Relativistic mechaninay
admit such a function once a connection betweersesasnd
velocities do exist, but will argue that the effean only be
observed at relativistic velocities. Statistical amenics, on
the other hand, is the only theory that may carsithe
ambiguity and treath(a) as a description of the path
followed by the masses, a function that is seresitiy the
order of experimentation and takes the respongilfitr the
fact that ideal isolation of the two bodieg andm, could not
be achieved. This last argument will now be folldwa a
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study of the evolution of the mechanical statethefsystem and lasts a time &t; to reach equilibrium. An analogous
M, my, my]. situation appears in stage 3 for the baoaly. The negative
value indicates that these bodies are relaxing afk or to
EVOLUTION OF THE STATES OF THE SYSTEM equilibrium. Due to the evolution of the systemg tlalling
bodies reach equilibrium at a later tindé,+ nét (n = 1,2,...),
Historically, the subject of thermodynamics arosébe  \yhere pt + ndt) is the proper time of the simultaneous
the atomic structure of matter was understood [4,5]ygies andbt the time interval between observations. Note

Macroscopic  systems ~began  to bﬁl studied from &5t > &, is an experimental condition imposed by the
phenomenological point of view in the 1@entury, giving  arre of the measurement process: the evolutiothef

rise to the laws of thermodynamics and the CONGHPt echanjcal system must be lower than the “rateaitf 6f
Entropy as a function that characterizes enelerostateof a1 (internal) bodiesy, andm,

system. When the theory of atomic constitution ctter
gained importance, macroscopic systems began to be my m
analyzed from a microscopic point of view as system 5t i 5 i
consisting of very many particles or subsystems. .

This atomic approach to macroscopic problems,
originally from the kinetic theory of gases, waserth
consistently developed (among many other contrilsiitby
Clausius — the man whimventedEntropy, Maxwell — that
formulated the distribution law of molecular velibes and
Boltzmann, with his fundamental equation in an :
integrodifferential form. The work of Boltzmann [6] Ti
provided a more general and fundamental analyses Om
irreversible processindthe approach to equilibriupgiving

Ht Time

ot ot ot

rise to the further development of the discipliriestatistical FIGURE 4 — Time Evolution of a three body Mechah@Bystem
mechanicsthat is, the method of calculus of the macroscopi

parameters of a system from a knowledge of its astmwpic This last condition is a constraint, representiny a
constituents. uncertainty on the observation & carried out by the

In the sequence of this contribution our attemptois (jhternal) observer that measuré, andat, . Here we note
follow this method, as if theipod — Clausius, Maxwell and {14t from the point of view of Newtonian Classical
Boltzmann arrived before Newton. Mechanics this constraint is irrelevant, once oleser

Figure 4_p|ctures the evolution of t_he massem"a”f? measures only the time of fdlt, of the bodiesn . The body
m,. In opposition to the usual formulation of thee#r fall M, say, the Earth, is not taken into account

analysi_s, at least two t_imes can be diS“”QUiShﬂ"? Considering Equations (13) and (14), the changes
relaxation time of the bodies, and m, when taken outside between adjacent steps can be written as :

M, or the elapsed time of "fall"df) and the time interval
between observations, or the rate of change ofwthele

mechanical systend). There is also a third time associated AS' i+ = S‘fl - S (15)
to the body M -At, named theroper timeof the bodyAt is
also the proper time of m; and m, when these are Conversely, Figure 4 shows a dynamical evolution of
simultaneous with M, such as in stefje the system [Mmy, my] whereas each stage represents a static
Defining the state S of the system by the massesept ~ picture of M, m and n3; thus, as a result of evolution, each
at a particular time, the initial state can be espnted by: stage can also be represented as:
=S +AS . (16)
s, EW (13) SI S S Li

S’ can be computed for all stages (i >0) and reptssen
an excited or meta-stable state resulting from abe of
experimentation, as opposed to the static pictNoaw, as a
result of the distinct values offi(e) ( Figure 3) two ways of
evolution can be distinguished: evolution “A”, whee first

Following this definition, the stages of the medhah
system [ Mm; , m, ] can be represented by similar relations:

S = M+m, LY , = M+m +m, experiment is the "free fall” of bodyy, and the second the
At+& -4& At+20t “free fall* of body m, and evolution “B” when the first

M+m +m experiment is the "free fall" of body, and the second the

S, = M+m, , m, . E% (14) “free fall* of body m,. Note that distinction in this case
At+3& -4, At+40t relates to the order of experimentation, leading t@ading

of the states S as a mechanical Entropy of the evegdtem
At the initial stage Sall the bodies are together, but at[M ,my, m,]. We compute the changes for one of these two

the first experimentation stage;, Sthe bodym, is retired  cases and present the result for the other evalutio
from contact with M andan, . Thenm;, follows its own way
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Following the picture of Figure 4 and computing the

changes, we have for the first evolution from ssage 1:

M+m, m M+m+m,
At+9t Ot At

7

AS,,D

rearranging the terms,

1 1 1 1

AS, OM + -——|-m| —+—

$: 0 mZ){At+5t At} ml[At Jg]
Furnishing the first stage Safter experimentation:

(M + 2 L g[ti2) @
S0l mZ){AHJt At} ml[At ag]

Similarly, stages 2 and 3 after experimentation: are

1 2 2 1 2 2) 19)
I - +m|— —
At At+2& At+A& At At+2& &

S, 0(m +rr5)[

*D—M[l— 2 _, 2 2 j—
S, At At+& At+284 At+3X
1 2 2 2
_rnl —+ —_ + —
At At+2& At+3& A&,

1 2 2
-m,| —- + -— | (20
(At At+&  At+2X dzj

Thus we call final stage of the evolution pictured
Figure 4 as 5, in order to explicitly consider the difference
in the order of evolution of the system; thus, =SS*,, is :

1 2 2
(Y —
SL\ ( +n1+m£){At+At+25t+At+45t}

(M +m)—2

At +3&
Alternatively, the order of experiments can be reag by
exchangingmn; andm, ; states § S and S are unchanged,
but stages 1 and 3 become:

+2ﬂ +2ﬁ —
oy o,
(21)

_(M +m2)At+d

M +ml+ m,
A+ -a&,

I\/|+m2+ m,

;S
At+3& -4,

(22)

Slz

This leads to a final state slightly differentfi&* given by
Eq. (21) ; calling this other evolution a8, Sve have:
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+2ﬁ_

d,

1 2 2 m
O(M — 2—
SB ( +ml+mZ){At+At+2d+At+4d} da,

-(M (M +m,)

This shows that, depending on the order
experimentation, the final state of the system ed#f
Defining a quantit\Ss = |S' — S| representing the variation
associated to the process, we have:

} (24)

This result is independent of the choice of thehtlig
bodies, since no matter ymm, +dM or mp, = m + oM,
the value ofAS remains the same. Thus experimentation
gives rise to distinct results, according to theeorof the
procedure. Conversely, the act of experimentatimuchs
the system, in a sense that it does not returrhéosame
configuration; the changes related to each of ihdids M,
m; and m can also be calculated. Choosing the last
evolution, the accumulated change for each onehef t
bodies can be computed.

+m,) (23)

At+d_ At +3a

of

1 1
A+ At+3%

AS, Dm - m)

RESULTS AND DISCUSSION
The change related to body M is:

1 2 2 2 1
OM| — - - +
AS. (At A+ At+2& At+34% At+4d'tj

)_

This result can be written as two sets,

1 1 1 1 1
OM| —- + - +
AS. [At At+& At+2& At+34 At+4K

)

According to Leibniz's theorem [7] for alternatiagts,
each one gives a positive sum not superior toitketérm,

that is:
1 1

AS, DM[E_Ade (29)

1 1 1
_M —_ +
A+ At+28 At +34

1 1
OSASASM(E s

Thus a rough result is:
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Similarly, the resulting change for the bodmsandm,are: the variables of the bodies, andm, , equation (30) inserts
the h function as a connection with the motion of theteyn
2m, as a whole; this opens the possibility to interphetdifferent
0< ASm,L <—=  (26) values ofh as distinct paths that the light bodies, ( m,)
&1 may follow on their way back to equilibrium, a “skical”
uncertainty in the motion of the mechanical system.
2m, Conversely, this function is directly related te thicture of
(27) Newtonian mechanics represented by Figure 2, so the
&2 explicit introduction of the time of the systent in the
Classical formalism allowed the description of thetion in
Taking the right hand of Equations (26) and (28 ean terms of change of states without any significant
write: modification of the Newtonian results.

0<AS.:. =

%Asml <m (267) CONCLUSIONS

This contribution reviews the original experiment o

Jtz ] Classical Mechanics centering the discussion on the
— AS,,sm  (27) evolution of states and explicitly pointing the adthat the

2 experimental procedure (Fig. 1) that leads to #findion of
masses and derivation of the “laws of motion” isaafistic.
Analysis of a realistic experiment ( Fig.2 ) leadsmultiple
solutions, expressed by the valueh@f), revealing that the
classical results are based on a particular résult: 0 ).
Application of a simple description of the motiamterms of
change of stages, without any attempt to quantifinaother

Recovering that the quotientny/m, was already
determined by the Classical experiment, Figuréu2nishing
the usual ratio of accelerations — Equations (Q)), the last
two relations give:

m, V Asﬂ X than the original Newtonian results, indicates that act of

20 h(a)_z > 89 1 (28) experimentation disturbs the evolution of the syste

m, V ASm&Z Employing the concept of Mechanical States, those
1 distinct results can be associated to variatiorth@forder of

Here we note thah(a), defined by Equation (4) as a the whole mechanical system [ M,,nm,]. This opens the
function of masses of the three bodies (M. my ) and the possibility to the introduction of a function “Stefined in
acceleration of body M\{) plays the same role as the terms of the dynamical variables of the systemt,th&es

Newtonian constant of proportionality between massed into accc_)unt the process of changx_éS“ of the mechanical
accelerations and, apart from the existence oihdisvalues, system, i.e., the c_on_dmon _qnd_er which the processir and
as given by Equations (8), (10), (11) and (12)isistil  When the system s in equilibrium. _ .
essential for the classical definition of masses. Accord|_ng to the reSUItS. obtalned,_ this f.“”C“OFP'm
On the opposite, elimination of the times in E)(By to any realistic process taking place in an isdlaggstem,

means of the usual definition of acceleration, that such as the one desgrlbed here — the “free fz_ﬂbugh a
number of other classical systems, such as theionsobf a

. simple pendulum, the harmonic oscillations of a ybod
<Vi > = 5ti Vi (29) connected to a spring, etc., could be providedvahg the
same perspective.
) . ] This leads to a plausible association of this fiamcto
and taking <v; > as the medium value of the velocity the concept of Entropy, as first devised by Clasisio the
acquired by bodym , we can finally establish a relation context of Thermodynamics and the subsequent dewelot
among masses (embodied Irfz) ) , velocities, and the of the balance between macroscopic and microscopic
change of states of the Mechanical System throughtte  methods of approach to equilibrium of mechanicateys.

experimental procedure, as represented ®y This suggests that the original Newtonian pictufe o
Classical Mechanics expressed in terms of timed f{i@fds)
ASrrh <V2> can be adapted to a broader view more compatitile the
—_—= (a) (30) further development of mechanics, as put forwardughout
Asz <V1> the last century scientific revolution, embodied ihe

relativistic and quantum theories, giving rise tordtary and
comprehensive conceptual framework for the mecladnic
sciences. Most important, the current approach seem
compatible with the contemporary efforts [8-10] on
recovering and bringing the fundamentals of theidbas
sciences in to Engineering curricula.

Finally we note that Equation (30) has a form samib
equation (1): velocities take the place of accéiena and
the ratio of masses are substituted by the ‘“ratigtates";
also, the motion of thenj, | m,] subsystem probably occurs
in the direction of minimum relativAS changes. Moreover,
though equations (26" ) and ( 27" ) were writteterms of
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