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Abstract - This contribution analyses the classical laws of 
motion by means of an approach relating time and 
Entropy. Following the major conceptual issues 
introduced in the last century by the quantum and 
relativistic theories, that profoundly modified our 
understanding of mass, time and causality, we argue that 
adopting the notion of changes of states as opposed to the 
usual derivation of Newton´s laws in terms of fields, a 
broader picture is obtained; for instance, description of 
the motion indicates that the act of experimentation 
disturbs the evolution of the system. Moreover, it is 
shown that a function of states can be written in terms of 
dynamical variables: masses and velocities. Association of 
this function to the concept of Entropy follows a 
procedure analogous to the derivation of the second law 
of Thermodynamics, giving rise to a unitary  conceptual 
framework, suggesting an intriguing general picture 
where the diverse branches of mechanics turn out to be 
related by a common foundation. 
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INTRODUCTION 

It has probably occurred to every student of the physical 
sciences that, apart from the inherent difficulties of 
deduction of Newton´s Laws [1–3], there is a lack of 
connection between the original formulation of Classical 
Mechanics and the subsequent development of the modern 
Quantum and Relativistic theories, particularly the former, 
which is formally based on the concept of “states of a 
system” rather than on the notion of times and fields. In fact, 
the formulation of the Classical Laws of Motion, by Sir Isaac 
Newton, marked the 17th century transition from a 
philosophical qualitative description of observed facts to a 
physical quantitative representation of experimental results; 
in short, it was the birth of controlled laboratory methods. 
The primordial experiment of Mechanics [1] follows the 
procedure of measurement and repetition and is pictured in 
Figure1: a body m1 is abandoned near the proximity of a 
body M and the “rate of fall” determined by a time 
measurement; however, it is necessary to repeat the test, 
employing a distinct test body, say m2 .  
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FIGURE  1 – The Classical Experiment 

 

The result indicates a proportionality of the ratio of masses to 
the ratio of accelerations, that is:  
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where the pair ( mi ,vi ) refers to the "light" body whereas the 
pair ( M , V) refers to the “heavy” body. 
The general representation of the classical experiment is :  
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where h, the “constant of proportionality”,  assumes the 
value h =  – 1  and, according to Classical mechanics,  leads 
to the second  ( Pi = mivi ) and to the third laws ( Fi = - Fj ). 
 However, Figure 1 seems unrealistic once how 
could one generate, indefinitely, masses mi to experiment 
(balance) with M? A distinct view of the Classical 
experiment is shown in Figure 2.  
 Comparing Figures 1 and 2 we note that there is no 
place for m2, other than on the surface of M, when m1 is 
"falling". The same is true for any body mi used as a test 
body in the presence of M. Thus Figure 1 represents an 
imaginary or gedanken experiment, in a pure quantum-
mechanical sense; that is, an experimental procedure that 
could not be carried out. In other words, the transition from 
the philosophical qualitative description of facts to a 
quantitative representation of experimental results was 
inconsistently conducted by Classical mechanics, leaving 
open the problem of observation.  
 Now Figure 2 pictures a 3-body problem which, as 
far as experimental methods are concerned, is the minimum 
necessary arrangement to assure consistent results; according 
to experimental data, the first and second stage gives, 
respectively: 
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FIGURE 2 – Initial, first and second stages of a realistic Classical 

Experiment 
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Note that in the results of the experiment pictured in 
Figure 2, 

iV
• is the acceleration of  the conjunct  ( M + mi ) 

and  iv&   the acceleration of  mi; the general representation of 

the experiment becomes: 
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According to this relation, the  'constant of 
proportionality' h between the ratio of masses and the ratio of 
accelerations assumes the value: 
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Thus, the Classical  "free fall" result  becomes a 3–body 
experiment and h reveals a dependency on the third part. A 
number of interpretations may result, but we note that a 
constant h, that is,  independence on the masses mj indicates 
no repetition, or a result based on a single data; thus we will 
follow the possibility that the full value of h can be obtained 
from the analysis of  the experimental data. 
 

ANALYSIS OF THE "CLASSICAL" EXPERIMENT 
 

Let Mmm δ+≈ 12 in  (4);  elimination of m2 gives:  
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Now, taking M >> m1 ,  
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 Defining the ratio of masses 
M

Mδα ≡ ,  h is given by : 
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Conversely, elimination of m1 instead of m2  in equation (4) 
gives: 

Mmm δ−≈ 21  

so that h becomes :  
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that is, according to the previous definition of α, we have: 
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Results represented by equations (8) and (10) appear 
contradictory; an analogous situation occurs when body 1 is 
considered heavier than body 2, that is: 

Mmm δ+≈ 21  
In fact, working out this last assumption, we are led with 

four distinct results for h = h(α). The additional values are: 
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Relations (8), (10), (11) and (12) represent four distinct 

results for the "same" experiment; however, these are not 
precisely the same, once addition of a mass (δM) to m1 is 
physically distinct from subtracting a mass (δM)  from m2. 

Classical mechanics may argument that h (α) is 
constant, that all values converge to 1; moreover, a direct 
experiment relating bodies (M + m2) to (M + m1) is also 
virtual. However, the distinction of experiments is 
guaranteed by α, not by employing different lesser bodies m1 
and m2 in successive stages. A plot of these distinct results is 
given in Figure III. 

 

 
FIGURE 3 – Plot of the four distinct results of the Classical 

Experiment 
 

The argument of the Quantum and Relativistic 
mechanics could be as follows: the first may argue that the 
particular value h(α) assumes is irrelevant, since this 
function is not an observable. Relativistic mechanics may 
admit such a function once a connection between masses and 
velocities do exist, but will argue that the effect can only be 
observed at relativistic velocities. Statistical mechanics, on 
the other hand,  is the only theory that may consider the 
ambiguity and treat h(α) as a description of the path 
followed by the masses, a function that is sensitive to the 
order of experimentation and takes the responsibility for the 
fact that ideal isolation of the two bodies m1 and m2 could not 
be achieved. This last argument will now be followed, in a 
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study of the evolution of the mechanical states of the system 
[M, m1, m2]. 

 
EVOLUTION OF THE STATES OF THE SYSTEM  
 
Historically, the subject of thermodynamics arose before 

the atomic structure of matter was understood [4,5]. 
Macroscopic systems began to be studied from a 
phenomenological point of view in the 19th century, giving 
rise to the laws of thermodynamics and the concept of 
Entropy as a function that characterizes each macrostate of a 
system. When the theory of atomic constitution of matter 
gained importance, macroscopic systems began to be 
analyzed from a microscopic point of view as systems 
consisting of very many particles or subsystems. 

This atomic approach to macroscopic problems, 
originally from the kinetic theory of gases, was then 
consistently developed (among many other contributors) by 
Clausius – the man who invented Entropy, Maxwell – that 
formulated the distribution law of molecular velocities and 
Boltzmann, with his fundamental equation in an 
integrodifferential form. The work of Boltzmann [6] 
provided a more general and fundamental analyses of 
irreversible process and the approach to equilibrium, giving 
rise to the further development of the discipline of statistical 
mechanics, that is, the method of calculus of the macroscopic 
parameters of a system from a knowledge of its microscopic 
constituents.  

In the sequence of this contribution our attempt is to 
follow this method, as if the tripod – Clausius, Maxwell and 
Boltzmann arrived before Newton. 

Figure 4 pictures the evolution of the masses M, m1 and  

m2. In opposition to the usual formulation of the “free fall” 
analysis, at least two times can be distinguished: the 
relaxation time of the bodies m1 and  m2  when taken outside 
M, or the elapsed time of "fall" (δti) and the time interval 
between observations, or the rate of change of the whole 
mechanical system (δt). There is also a third time associated 
to the body M – ∆t, named the proper time of the body. ∆t is 
also the proper time of  m1 and m2  when these are 
simultaneous with M, such as in stage So .  

Defining the state S of the system by the masses present 
at a particular time, the initial state can be represented by: 
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Following this definition, the stages of the mechanical 

system [ M, m1 , m2 ] can be represented by similar relations:   
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At the initial stage So all the bodies are together, but at 

the first experimentation stage, S1,  the body m1 is retired 
from contact with M and m2 . Then m1 follows its own way 

and lasts a time – δt1 to reach equilibrium. An analogous 
situation appears in stage 3 for the body m2 . The negative 
value indicates that these bodies are relaxing back to ∆t, or to 
equilibrium. Due to the evolution of the system, the falling 
bodies reach equilibrium at a later time, ∆t + nδt (n = 1,2,...), 
where (∆t + nδt) is the proper time of the simultaneous 
bodies and δt the time interval between observations. Note 
that δt ≥ δti  is an experimental condition imposed by the 
nature of the measurement process: the evolution of the 
mechanical system must be lower than the "rate of fall" of 
the (internal) bodies m1 and m2 .  
 
                     m1                                    m2 
 -δti                                               
 
         ∆t         +δt           +δt         +δt          +δt     Time 
 
 
    m1  m2      
 
 
Time 
 
 

FIGURE 4 – Time Evolution of  a three body Mechanical System 
 

This last condition is a constraint, representing an 
uncertainty on the observation of δt carried out by the 
(internal) observer that measures  δt1 and δt2 . Here we note 
that from the point of view of  Newtonian Classical 
Mechanics this constraint is irrelevant, once observer 
measures only the time of fall δti of the bodies mi . The body 
M, say, the Earth, is not taken into account. 

Considering Equations (13) and (14), the changes 
between adjacent steps can be written as : 
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Conversely, Figure 4 shows a dynamical evolution of 

the system [M, m1, m2] whereas each stage represents a static 
picture of M, m1 and m2; thus, as a result of evolution,  each 
stage can also be represented as: 
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Si

* can be computed for all stages (i >0) and represents 
an excited or meta-stable state resulting from the act of 
experimentation, as opposed to the static picture. Now, as a 
result of the distinct values of  h(α) ( Figure 3) two ways of 
evolution can be distinguished: evolution “A”, when the first 
experiment is the "free fall” of body m1  and the second the   
“free fall“ of body m2 and evolution “B” when the first 
experiment is the "free fall" of body m2  and the second the   
“free fall“ of body m1. Note that distinction in this case 
relates to the order of experimentation, leading to a reading 
of the states S as a mechanical Entropy of the whole system 
[M ,m1, m2]. We compute the changes for one of these two 
cases and present the result for the other evolution. 
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Following the picture of Figure 4 and computing the 
changes, we have for the first evolution from stages 0 �1: 
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rearranging the terms,  
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Furnishing the first stage S1* after experimentation: 
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Similarly, stages 2 and 3 after experimentation are : 
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Thus we call final stage of the evolution pictured in 

Figure 4 as SA , in order to explicitly consider the difference 
in the order of evolution of the system; thus,  SA = S*4, is :  
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Alternatively, the order of experiments can be reverted by 
exchanging m1 and m2 ; states So, S2 and S4 are unchanged, 
but stages 1 and 3 become: 

 

2

21
1 t

m

tt

mM
S

δδ −
+

+∆
+

≡   ; 
1

12
3 3 t

m

tt

mM
S

δδ −
+

+∆
+

≡   (22) 

 
This leads to a  final state slightly different from SA given by 
Eq. (21) ; calling this other evolution as SB, we have: 
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This shows that, depending on the order of 

experimentation, the final state of the system differs. 
Defining a quantity ∆SP = |SA – SB| representing the variation 
associated to the process, we have: 
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This result is independent of the choice of the light 

bodies, since no matter  m1 = m2 + δM  or  m2  =  m1 + δM , 
the value of ∆S remains the same. Thus experimentation 
gives rise to distinct results, according to the order of the 
procedure. Conversely, the act of experimentation disturbs 
the system, in a sense that it does not return to the same 
configuration; the changes related to each of the bodies M, 
m1 and m2 can also be calculated. Choosing the last 
evolution, the accumulated change for each one of the  
bodies can be computed. 

 
RESULTS AND DISCUSSION 

 
The change related to body M is: 
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This result can be written as two sets, 
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According to Leibniz's theorem [7]  for alternating sets, 

each one gives a positive sum not superior to the first term, 
that is:  
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Thus a rough result is:  
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Similarly, the resulting change for the bodies m1 and m2 are: 
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Taking the right hand of  Equations (26) and (27) we can 
write: 

11
1   

2

t
mSm

≤∆
δ

         (26´ )  

 

22
2   

2

t
 mSm

≤∆
δ

       ( 27´ ) 

 
Recovering that the quotient m1/m2 was already 

determined by the Classical experiment, Figure 2,  furnishing 
the usual ratio of accelerations –  Equations (1), (3), the last 
two relations give: 
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Here we note that h(α), defined by Equation (4) as a 
function of masses of  the three bodies (M. m1, m2 ) and the 
acceleration of body M (

iV& ) plays the same role as the 

Newtonian constant of proportionality between masses and 
accelerations and, apart from the existence of distinct values, 
as given by Equations  (8), (10), (11) and (12), it is still 
essential for the classical definition of masses. 

On the opposite, elimination of the times in Eq. (28) by 
means of the usual definition of acceleration, that is: 
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and taking  < vi > as the medium value of the velocity 

acquired by body mi , we can finally establish a relation 
among masses (embodied in h(α) ) , velocities, and the 
change of states of the Mechanical System throughout  the 
experimental procedure, as represented by ∆S :  
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Finally we note that Equation (30) has a form similar to 
equation (1): velocities take the place of accelerations and 
the ratio of masses are substituted by the “ratio of states"; 
also, the motion of the [m1 | m2] subsystem probably occurs 
in the direction of minimum relative ∆S changes.  Moreover, 
though equations ( 26´ ) and ( 27´ ) were written in terms of 

the variables of the bodies m1 and m2 , equation (30) inserts 
the h function as a connection with the motion of the system 
as a whole; this opens the possibility to interpret the different 
values of h as distinct paths that the light bodies (m1 , m2) 
may follow on their way back to equilibrium, a “classical” 
uncertainty in the motion of the mechanical system. 
Conversely, this function is directly related to the picture of 
Newtonian mechanics represented by Figure 2, so the 
explicit introduction of the time of the system ∆t in the 
Classical formalism allowed the description of the motion in 
terms of change of states without any significant 
modification of the Newtonian results. 
 

CONCLUSIONS 
 

This contribution reviews the original experiment of 
Classical Mechanics centering the discussion on the 
evolution of states and explicitly pointing the idea that the 
experimental procedure (Fig. 1) that leads to the definition of 
masses and derivation of the “laws of motion” is unrealistic. 
Analysis of a realistic experiment ( Fig.2 ) leads to multiple 
solutions, expressed by the values of h(α), revealing that the 
classical results are based on a particular result (α → 0 ). 
Application of a simple description of the motion, in terms of 
change of stages, without any attempt to quantification other 
than the original Newtonian results, indicates that the act of 
experimentation disturbs the evolution of the system. 

Employing the concept of Mechanical States, those 
distinct results can be associated to variations of the order of 
the whole mechanical system [ M, m1, m2]. This opens the 
possibility to the introduction of a function “S”, defined in 
terms of the dynamical variables of the system ,that takes 
into account the process of change “∆S” of the mechanical 
system, i.e., the condition under which the process occur and 
when the system is in equilibrium.  

According to the results obtained, this function applies 
to any realistic process taking place in an isolated system, 
such as the one described here – the “free fall”, though a 
number of other classical systems, such as the  motions of a 
simple pendulum, the harmonic oscillations of a body 
connected to a spring, etc., could be provided following the 
same perspective. 

 This leads to a plausible association of this function to 
the concept of Entropy, as first devised by Clausius, in the 
context of Thermodynamics and the subsequent development 
of the balance between macroscopic and microscopic 
methods of approach to equilibrium of mechanical systems. 

This suggests that the original Newtonian picture of 
Classical Mechanics expressed in terms of times (and fields) 
can be adapted to a broader view more compatible with the 
further development of mechanics, as put forward throughout 
the last century scientific revolution, embodied in the 
relativistic and quantum theories, giving rise to a unitary and 
comprehensive conceptual framework for the mechanical 
sciences. Most important, the current approach seems 
compatible with the contemporary efforts [8–10] on 
recovering and bringing the fundamentals of the basic 
sciences in to Engineering curricula.  
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