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Abstract - In order to make a connection between the
theoretical and practical aspects of computer
architecture/organization courses at undergraduateand
graduate levels, many software tools have been uséd
the past. If a large design-space needs to be exgd
using detailed simulations of a few industry-standal
benchmark programs, the computational and time
resources can become an impediment, thus placing a
practical limit on the number of experiments, a stadent
can complete in one semester. In this paper, we [pose
a software tool for predicting processor system
performance. The tool can be used for teaching hotihe
hardware configurations (processor microarchitectue,
memory hierarchy, etc.) and/or software (benchmark
program) characteristics affect the system throughpt
(as represented by instructions completed per cydleUse
of the proposed tool in computer architecture class has
demonstrated its effectiveness in improving the stlents'
understanding of the related topics.

Index Terms — Computer architecture, Simulation tools,
Neural method, Performance prediction model, Wedeta
education.

INTRODUCTION

Computer architecture and organization are constdenes
of the most difficult courses both to teach andetrn. It is
usually a challenge to teach a subject in an enxiant
where the covered topics are advancing very rapidlguch
conditions, the instructors must be up to date With state
of the art. At the same time, they should contiralpuevise
their lectures, tutorials, problem sets, lab exs&si and
exams to match the new development in the covengids.
For example, today’'s optical storage material stholé
revised to cover the newly released HD DVD and Bay
technologies in addition to the widely-used CD dndD
technologies. Additionally, the lab component imguter
architecture courses requires the design and daracof
both hardware and software experiments. This comapon
should be designed with extra care to make a dlakr
between the theory and the practical labs.

In order to fill the gap between the theoretical an
practical aspects of computer architecture/orgdioza
courses at undergraduate and graduate levels, sadiyare
tools have been created and used in the past. Theke
vary in how they handle digital system simulatidrhey
usually offer means for adding/removing hardware
components, viewing simulation results, and coridgct
statistical analysis of system performance. Theureabf
these tools varies widely in several dimensions[[]] that
include: simulation level (cycle-accurate, overall behayio
level of detail (functional blocks, RTL), scope gpessor
only, system level), as well as user-interface fghieal or
command-line). Examples of some basic simulatoes ar
Babbage's analytical engine, CASLE, CPU-SIM, EasyCP
Little Man Computer, etc. The medium-complexity
simulators include: SPIM, MIPSpim, THRSim11, etada
some advanced simulators are: DLXSim, RSIM, OSim,
SimpleScalar, etc.

If a large design-space needs to be explored using
detailed simulations of a few industry-standard dimemark
programs, the computational and time resourceplzare a
practical hurdle on the number of experiments desitican
complete in one semester. Consider the situatioenwthe
students are asked to study the effect of changewgral
parameters (e.g., number of integer multiplieranber of
float point multipliers, fetch queue width, etc.)h dhe
computer system performance. To achieve that,ttidests
have to run several sets of simulations. In eadh they
should change only a single parameter and measare t
system performance while a benchmark program is
executed. It is obvious that running these expantmesing
a detailed simulation-based tool (e.g., cycle-aat®ur
simulator) will consume a large amount of compotzai
and time resources.

In this paper, we propose a software tool, named
PerfPred, for predicting processor system performance; the

tool can be used for teaching how theardware
configurations  (processor microarchitecture, memory
hierarchy, etc.) and/orsoftware (benchmark program)

characteristics affect the system throughput. Exesnjof
hardware parameters are: issue-width, ALU counthea
size, cache configuration, branch prediction scheate.

Learning computer architecture is also challenging The software parameters are determined by the benchmark

because of its high degree of complexity. It reggliithe
understanding of several interrelated subjects ithelude
system design, electronic circuits, digital logassembly-
language programming, as well as application

programming, discrete math and performance analysis
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program selected for executio®erfPred provides the
output in terms of instructions per cycle (IPC) @hiis a
widely-used metric for a processor system throughphe

level core ofPerfPred is a machine-learnt model (based on neural

network (NN) methodology) that speeds the taskysfesn
performance prediction to less than a second;ishégveral
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input layer of hidden layer of  output layer of includes simple tools that are mainly used in the
2 neurons 3 neurons 2 neurons introductory undergraduate courses. The secondyaate
includes more advanced tools that are largely used
advanced microarchitecture courses. These toolsfowre
on sophisticated parallel architectures with migtigPUs.
Finally, the third category comprises the toolsidaid to
memory subsystem category which focus on the iotierss
output among the CPU, main memory, and cache memory.
Some of the tools in the first category, such asliitle
Man Computer [8], use only simple addressing modes,
limited instruction sets, and very simple memorydeis.
: : While, other tools (belonging to the third categosych as
FIGURE 1 LC2 [9], SPIM [10], and SPIMSAL [11] tend to incled

ASIMPLENEURALNETWORKCAggTOAlIJltlrI;\IUGTTHREELAYERSINPUT,HIDDEN, more realistic set of addressing mOdeS, more C(IEnple

instruction sets, more realistic memory hierarchiaad
orders of magnitude faster than detailed simulatiased =~ SOMetimes an interrupt mechanism.

methods [4]. PrefPred has a user-friendly web-based _ The third category (more advanced tools) includes
interface, which removes the need for program llegian ~ SimpleScalar [12], DLX, MipSim [13] and Mic-1 [14].
on individual machines. These tools are designed to allow the observatibn o

NN’s ability to model the behavior of non-lineardan Machine language execution at the microcode lez. (
high-dimensional systems has been used extensivelye _data paths, control units). Advanced to_ols can seduo
past. NNs comprise of simple processing entiticke¢a Nvestigate the advantages and disadvantages (e.g.,
neurons which emulate the characteristics of bioklg ~ €fficiency, —complexity) —of performance enhancing
neurons (Figure 1). Interconnections of neuronslfeize techniques such as pipelining, branch predictiord an
the operations that are usually performed sequisntig the |n§truct|on-level parallellsm. Some of these swtmla are
traditional computers .NN-model creation tfaining) microprogrammable, allowing students to experimsith
involves repeated presentation of known input-outets e design of instruction sets. The third categafgo
(training examples) to the network. With each cycle of includes tools for simulating multiprocessor arebitire.
training @Epoch), NN's internal structure (specifically, the These tools (e.g., GEMS [15], RSIM [16], WWT2 [17])
neuron weights) is adjusted in an attempt to bring the NN- allow students to study the effect of different idas
output(s) closer to those of the training examfBés parameters (e.g., memory sharing and locking sceeme

In the next section of this paper, we review thevjmus instruqtion level parallelism, etc.) on the perfamoe of
work related to teaching of computer architectiieen we complicated, multithreaded workloads such as datband

describe how a NN is used to build the nucleuBesfPred. web servers. _ _

The user interface is also discussed, followed oy tise _ The effect of the memory hierarchy (cache, mai an
cases oPerfPred. The last section of this paper presents the Virtual) on the performance of computer systemsais
conclusions as well as future extensions to theeatiwork. mandatory topic in any undergraduate computer

architecture/organization course. Therefore, rebeas
have paid great attention to the development ofistea
memory simulation tools. Some of the well knownl$oo
include Dinero IV [18], VirtualMemory [19] and SPMChe
[20]. Dinero IV is a cache simulator that supporgsious
types of caches, i.e., direct mapped, set asseeiatid fully
associative. Block sizes, associativity and otrerameters
may also be specified. The tool can also be usairialate
multiple levels of cache as well as for classifythg type of
misses (compulsory, conflict and capacity).

SMPCache is a trace-driven simulator for analyad a
teaching of cache memory systems on symmetric
multiprocessors. It has a graphic user-interfag #llows
the students to experiment different theoreticgleats of
cache memories and multiprocessors. Some of the
parameters that the students can study are: progcatity;
influence of number of processors, cache coherence
protocols, schemes for bus arbitration, mapping,
replacement policies, cache size (blocks in caamenber
of cache sets (for set-associative caches), nuamibeords
by block (memory block size), and the word sizewdwer,

a disadvantage of SMPCache is its slow simulatjpeed.
VirtualMemory presents a graphical interface allogvithe

PREVIOUS WORK

Due to the complexity of the computer architectared
organization courses, a variety of educational sdwhve
been developed and used by several educationuiinstis
worldwide to ease this complexity and improve theldy
of the teaching process. These tools differ greitlyheir
complexity, simulation level, and user interfacerli tools
were mainly text-based, while most of the curremhave
graphical interfaces that allow them to provide ugis
representation to the internal operation of a cdepu
system. To help instructors select the right taoltéaching
a specific computer architecture topic, an oriéotato the
current state-of-the-art in computer architectudeioation
resources is provided in [6]. The orientation ilfages five
major websites dedicated for computer architecture
educational resources. Throughout the orientatithe
authors attempt to identify the gaps between theent
resources available on the Web and the resouresteddry
the instructors and try to find why this gap exists

Previous work in computer architecture tools can be
divided into three main categories [7]. The firsttegory
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TABLE 1
PARAMETERS USED FORSM-OUTORDER SIMULATIONS AND FOR
SUBSEQUENTPERFPRED MODEL CREATION AND TESTING

Parameter Input Neuron Description Range

Type

Hardware Load/store queue (instructions) 2, 463832, 64, 128

Hardware Fetch queue width 2,4,8,16,32,64,128
(instructions)

Hardware Decode width 1,2,4,68,16, 32,64
(instructions)

Hardware Issue width in a cycle 1,2,4,8, 16,60,

Hardware Commit width in a cycle 1,2,4,8,16,682

Hardware Register update unit (instructions) 8,46, 32, 64, 128

Hardware Ratio of CPU and bus speeds 2,4,82648 128

Hardware Integer ALUs 1,2,3,4,5/6,7,8

Hardware Integer multipliers 1,2,3,4,56,7,8

Hardware Branch prediction scheme Taken, Not-taken,

Perfect (represented as
‘symbol’ in NN)

Hardware Branch misprediction penalty 1, 2, 3, 4, 6, 8, 12, 16, 24,
(cycles) 32, 48, 64, 96128

Software bzip2 (benchmark) 0,1

Software crafty (benchmark) 0,1

Software eon (benchmark) 0,1

Software mcf (benchmark) 0,1

Software twolf (benchmark) 0,1

Software vortex (benchmark) 0,1

simulation of virtual memory (main memory, hardkdand
page table) and exhibits statistical data during th
simulation.

NN-BASED PERFPRED TOOL DEVELOPMENT

The NN-basedPerfPred proposed in this paper includes
different microarchitectural (hardware) parameterpredict
the processor system performance which is measured
instructions completed per cycle (IPC). Each haréwa
parameter is represented by a single neuron inirtpet
layer. In addition, six neurons represent six défe
SPEC2000 CPU integer benchmarks (beip2, crafty, eon,
mcf, twolf, andvortex) [21]. There is a single hidden layer in
the model. One hidden layer is considered sufftcien
represent most non-linear systef®§. The model output
(IPC) is produced by single output neuron. The gane
hierarchy of this model resembles the NN shownigufe
1. Numerous experiments were carried out to detexrai
suitable count of neurons in the hidden layer af NN
(Details of these experiments are discussed shortly

The NN presented here models a superscalar pracessc

system, which in turn is based on SimpleScalats-
outorder architecture [12]. Table 1 lists different
configurations osim-outorder which were used to run more
than 6000 simulations. The time for a single siriataon
an x86-based Linux machine ranged from 0.5 to 2hdgix
SPEC2000 CPU integer benchmarks with their resgecti
‘test’ inputs were used in these simulations. Tiheukations
were fast-forwarded by 100 million instructions ighthe
maximum number of instructions was limited to 50illiom
[12], [21].
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The data acquired fromsim-outorder simulations
needed to be re-scaled and transformed. As widsbyh,
this step is required to make sure that all of Niguts
equitably influence the training process. As ameple, the
log, transformation was used for the values: {2, 4,68,32,
64, and 128}. After transformation, the input valusere
scaled to the range [0, 1].

The neural or analytical models can be severalrerde
of magnitude faster than simulation models butieepmay
have to be paid in terms of accuracy. 20-39% e@anges
were reported in many research works [22]-[26]. Hu
NN models, we opted for 15% error allowance fomiray
and validating. Validation was done with the inputput
examples (10% of total dataset); the later werestmmin to
the NN during training.

Brain-Maker (version 3.75), an MS-Windows based
software package [27] was used to create the NNefaod
This package usedeed-forward and back-propagation
methodology of neural modeling.

In our NN models, numbers of input and output nasiro
were fixed. However, in an effort to find an optimisized
NN model, hidden layer sizes from 2 to 30 were
experimented with. As expected, the more the nundfer
hidden neurons, the more the model's training fitena
count. Each NN-configuration was trained many timgés
randomly-set neuron weights at the training ontseteduce
the chances of running intocal minima. As mentioned
earlier, 90% of the complete data set was usedréiming
purposes, while the other 10% was used for tesdatal the
NNs’ predictive abilities.

The NN model training and validation statistics are
graphically shown in Figure 2. We notice that wétltount
of just 8 neurons in the hidden layer, training uxacy
(defined by the number of training sets predictetthivw the
desired error allowance) of nearly 85% was attaiieith 8
or more neurons in the hidden layer, the validatioouracy
(defined by the number of validation sets prediciéthin
the desired error allowance) remained quite clasghe
training accuracy, thus demonstrating the mode&&ring
effectiveness. Further more, increasing the hiddger size
beyond 8 neurons did not lead to any significant
improvement in prediction accuracy.
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FIGURE 2
TRAINING AND VALIDATION ACCURACIES AS A FUNCTION OF THESIZE OF
THE SINGLE HIDDEN LAYER IN THENN MODEL. BRAIN MAKER
PARAMETERS TRAINING/TESTING TOLERANCE= 0.15;LEARNING RATE
ADJUSTMENT TYPE= HEURISTIG; INITIAL NEURON WEIGHTS SET
RANDOMLY .
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Notice that all hardware (and software) parameter

(listed in Table 1) were used in building the cuathe
present NN models. We are extending the curremtareh
to study the contribution of each input parameterthe
model. This investigation may lead to a fewer numbie
neurons in the input and hidden layers.

PerfPred User Interface

A web-browser interface developed (in PHP) allowsriuto
easily select the input parameters (see Figur8I8. users
pick a given parameter using one of the ‘radiodnsgt (near
the middle of the screen). The range for this patamis
entered in two boxes (labeled ‘To’ and ‘From’) dwe teft of
the radio button. All other parameters take a singilue
that is entered in the ‘From’ box. Once the inpatgmeters
are selected, the ‘Plot’ or ‘Show values’ buttorpressed.
Based on this selection, the predicted values d#teere
plotted or listed in @ext box. The text box allows the user to
save the predicted values and export them intoffarelint
program such as MS-Excel. Values from multiple roas
be combined into a single plot; two such examples a
shown in the next section.

PERFPRED USE CASES

In this section, we present two examples of thiggitsa user
can gain by usin@erfPred performance prediction tool. We
chose 3 benchmarkd7p2, crafty, and eon) to study the
impact of varying the number of instructions issyset
cycle (issue width) on the processor throughput. wAleed
the issue width from 2 to 64. For all benchmarke w

2.50

2.00 ~

1.50 ~

1.00 ~

0.50

—e—bzip2 —=—crafty —a—eon
0.00 :

1 10
Issue width (instructions)

Processor throughput (IPC)

100

FIGURE 4
SENSITIVITY OF PROCESSOR THROUGHPLKIIPC) TO ISSUE WIDTH WHILE
ALL OTHER PARAMETERS ARE FIXED INITIALLY , ISSUING MORE
INSTRUCTIONS IN A CYCLE HELPS IMPROVES THE PROCESSOR
THROUGHPUT. HOWEVER, THIS INCREASE STOPS AS THE ISSUE WIDTH
EXCEEDS8 INSTRUCTIONS
from 1 to 128. Expectedly, the longer it takes ¢caver
from a branch misprediction, the lower the through(PC)
of the processor. The IPC curves for all the beramhmare
similar in shape. We notice thadrtex shows less sensitivity
to increased misprediction penalty thamcf and twolf.
Characterization of basic blocks of these prograarsshed
more light on the reasons for the sensitivity.

Note that the above results could have been aahbiye
running 21 actual simulations for the first useecasd 42
simulations for the second use case; both of thesad
have taken a day or more of computing time on ohe o
today’s PCs. In comparison, the same or more amofint

observe the general trend that IPC increases as morinformation can be acquired by running fPefPred tool in

instructions are issued in a cycle (see FigureH®wever,
the incremental gains made due to added issue hegdw
diminish when we go beyond 8 instructions. Thisitition
may come from the limited parallelism inherent imet
programs themselves.

less than a second.

To test the effectiveness BerfPred as a teaching tool,
we used it in one of the undergraduate level coemput
architecture courses in the previous (Fall 2006hester.
The student perception of the effect of changinffedint

As a second example, Figure 5 shows the behavior ofmicroarchitectural features in a processor was uatad

the processor system in response to branch migpicdi
for 3 different benchmarksncf, twolf and vortex. The
number of cycles taken after a mispredicted branaciyes

24 AMsim - Microsoft Internet Explorer provided by UAE University

Fie Edi View Favortes ook Help >
~
Processor Performance Predictor
Select one variable by selscting the radio button', The ranges re applicable orily for the selected variable, for all other variables, anly the
walue in the From? field is used.
PROCESSOR From? To Select one!
ok 7R 128 o
of 5 ] ol 12
1 64 o | W
1 64 o | s
= A o
1 64 © |&08
{ = 7 o | 04 s SR
1 8 o 02
1 g © | o+
T 3 o 0 k) 9% 128
2 Branch misprediction penalty icycles)
Flasting point multipliars 1 B o
Reatio of GPU and bus speeds 2 128 e
BRANCH PREDICTOR From o
e L e Fatfect. Show values
Branch misprediction penalty = T ®
(ydles) ®

WEB-BASED INTERFACE OFPERFPRED. IN THIS EXAMPLE, 'MISS PENALTY
OF BRANCH PREDICTORIS SELECTED TO STUDY ITS EFFECT ON THE SYSTEM
THROUGHPUT.
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before and after the tool introduction. Subsequesting
showed some improvement
concepts. Continued use of the tool in the curaet future
semesters is expected to reinforce the tool's lrsess.

1.50

1.20

0.90 ~

0.60 -

0.30 ~

Processor throughput (IPC)

—e—mcf —=—twolf —a—vortex
0.00 : : ‘ ‘

0 30 60 90 120
Branch misprediction latency (cycles)

FIGURE 5
SENSITIVITY OF PROCESSOR THROUGHPUT TO ISSUE WIDTH WHIIA L
OTHER PARAMETERS ARE FIXEDAS EXPECTED THE PROCESSOR COMPLETES
FEWER INSTRUCTIONS PER CYCLE AS THE BRANCH MISPREDICTION LERCY.

September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

in understanding of the



CONCLUSIONS

In this paper, we have presented an NN-based moces

tool/model for performance prediction; the tool veaisated
using the data acquired from a large number of ksitimns
covering a wide area of superscalar processor reggce.
The resultant model provided fast and reasonabtyrate
estimates of the throughput of the processor. PBtiedi
accuracies of 85% or better were observed, whidah
comparable to related NN models previously reporfgee
proposed performance prediction tool can be usedhe
study of microarchitectural trade-offs in a processystem
design. The tool can also be used effectively immater
science courses related to compiler optimization.

In pedagogical settings, the students gain theré¢tieal
knowledge of computer architecture/organization tie
lectures; subsequent laboratory assignments wRenfgpred
reinforce their learning of factors affecting thenguter
system performance. Use of tools similaPrefPred (e.g.,
SPMCache) in computer architecture classes
demonstrated its effectiveness in improving thedestis'
understanding of the related topics. It is expethed using

PrefPred will significantly help instructors close the gap

between the theoretical and practical aspects aipcber
architecture/organization courses

Further enhancements to the proposed predictiveemod

are a subject of our ongoing research. The imprevesn
include: investigation of methods for improved petidn
accuracy; dimension reduction of the model; indosof a
program’s dynamic characteristics as input pararsgédc.
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