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Abstract - The aim of this paper is threefold: (i) to 
elucidate the early history of the displacement (or 
stiffness) method of structural analysis, (ii) to draw 
attention to the large body of important scientific texts 
that remain concealed behind “forgotten” languages 
such as Latin, and (iii) to illustrate how the creation and 
early growth of a concept may be relevant to the 
teaching of engineering disciplines. We argue that 
Euler’s relatively unknown paper on the “problem of 
supports”, written in Latin, establishes him as the 
creator of the displacement method. Moreover, we show 
that the approach used to introduce the displacement 
method in typical textbooks on strength of materials is 
remarkably close to Euler’s procedure. 
 
Key Words- Displacement method, Euler, History of science 
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Lisez Euler, lisez Euler, c’est notre maître à tous. 
PIERRE-SIMON LAPLACE 

INTRODUCTION  

Every teacher of science and technology is faced with the 
difficult task of deciding on the best way of presenting to his 
students, for the first time, fundamental concepts and methods 
that are by no means obvious. The inception and early 
unfolding of these concepts and methods may often be of 
considerable pedagogic value, since they then appear 
reduced to their very core, or crystallized in special cases, 
yet “containing all the germs of generality” (to quote D. Hilbert). 
We illustrate this viewpoint by considering the approach 
used to introduce the displacement (or stiffness) method of 
structural analysis in typical textbooks on strength of 
materials, and by showing that it is remarkably close to the 
one used by Euler in his memoir De pressione ponderis in 
planum cui incumbit (On the pressure exerted by a weight 
on the plane on which it rests), presented to the St. Petersburg 
Academy on March 22, 1773, and published in the following 
year [1]. To do so, we first present an analysis of this ingenious 
and relatively unknown work, where we try to unravel the 
doubts, perhaps even misinterpretations, that it has caused 
among some of the most eminent historians of structural 
mechanics. Based on this analysis, we claim that Euler 
should be credited, in plain justice, with the creation of the 
displacement method. We also wish to draw attention to the 
immense body of scientific literature that remains concealed 
behind “forgotten” languages such as Latin – to make it again 

a living branch of our cultural heritage is a challenge worthy 
of the exertions of men of science, historians and philologists. 

This paper is humbly dedicated to the memory of Leonhard 
Euler, on the occasion of his tercentenary. 

THE BIRTH OF THE DISPLACEMENT METHOD – EULER ’S 
ANALYSIS OF THE “PROBLEM OF SUPPORTS” 

Historical uncertainties 

The displacement method is one of the fundamental methods 
of structural analysis and is covered in every undergraduate 
course in civil, mechanical or aerospace engineering. When, 
how and by whom was this method created? In a recent 
review paper [2], Samuelsson and Zienkiewicz, two leading 
figures in the field of computational mechanics, trace the 
origins of the displacement method back to Clebsch’s treatise 
on the theory of elasticity [3, 4], with a fleeting reference to 
Navier’s lecture notes of 1826 [5] (in fact, as pointed out by 
Pearson [6, p. 146], this matter had already been considered 
by Navier in his lectures for 1824 and in a note contributed 
in 1825 to the Société Philomatique de Paris [7]). However, 
according to Timoshenko [8, p. 36], the first treatment of a 
statically indeterminate problem is to be found in [9], a 
paper taken from Euler’s notebooks by Jacob Bernoulli II 
(who was presumably unaware of the existence of [1]) and 
published in German by his brother Johann Bernoulli III in 
1795 – an English translation of this document is available 
in [10]. But Timoshenko does not link Euler’s name to the 
displacement method, and neither does Benvenuto, who first 
uses the expression “deformation method” when discussing 
Clebsch’s work [11, p. 492]. Moreover, in his analysis of the 
memoir [1], Benvenuto casts some doubts on the soundness 
of Euler’s reasoning, suggesting that even if he had found an 
answer to the “problem of supports” (what reactions occur 
when a body is supported at more than three non-collinear 
points or at more than two collinear points?), he wouldn’t be 
able to explain why the answer was correct [11, pp. 442-
444]. We address these doubts in the remainder of this 
section, and we argue that [1] truly establishes Euler as the 
creator of the displacement method and the year 1773 as its 
birth date. But before we proceed, one further question 
remains: why is this important work so little known today? 
The answer lies in a combination of factors: firstly, it is 
written in Latin, an almost forgotten language in scientific 
and engineering circles; secondly, the displacement method 
really came into its own as a tool for the analysis of skeletal 
structures, while the “problem of supports” was not particularly 
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relevant for engineers; thirdly, the immense bulk of Euler’s 
publications and his many other achievements in all fields of 
mathematics and mechanics might have eclipsed this one. 

A giant leap forward – The birth of the displacement method 

To discuss the birth of the displacement method, first we 
must decide what our present-day understanding of this 
method is. Therefore, we begin this sub-section by listing its 
distinctive features (a salutary pedagogical exercise in itself): 
(i) The displacement method is applicable to the analysis 

of kinematically indeterminate structural systems. The 
degree of kinematical indeterminacy of the system is 
the number of independent parameters needed to define 
its deformed configuration. These parameters are called 
the generalized displacements. 

(ii) There is an equilibrium equation associated with each 
generalized displacement. 

(iii) The governing (or canonical) equations of the method, 
with the generalized displacements as unknowns, 
combine equilibrium, kinematics and constitutive 
equations. They are obtained by inserting the constitutive 
equations (written in stiffness format) and the kinematical 
conditions into the equilibrium equations. 

 
We add a fourth, non-fundamental, feature to this list, since 
it is intrinsic to the actual use of the method: 
(iv) Once the generalized displacements are known, the 

kinematical and constitutive equations can be used to 
find the internal forces. This is usually referred to as the 
post-processing phase. 

 
How does Euler’s memoir fit in this conceptual 

framework? He tackles a very specific problem: that of 
finding the forces or pressures (the two words are used 
synonymously by him) exerted by a weighting body on a 
supporting medium with a horizontal surface. If the body 
rests on three non-collinear point supports, the problem is 
statically determinate, and equilibrium alone is enough to 
solve it. When the body rests on more than three non-
collinear supports, or on a continuous base, the problem 
becomes statically indeterminate – equilibrium considerations 
alone are no longer enough to render a unique solution. 
(From an abstract viewpoint, this amounts to the 
decomposition of a force along more than three parallel 
directions not contained in the same plane.) Any attempt to 
arrive at a unique solution using purely statical means is 
doomed to failure – but this was not known in Euler’s days, 
and many tried to follow that path, as Benvenuto so vividly 
describes in [11, pp. 447-460]. 

Euler, on the other hand, shows that it is possible to 
reach a definite solution if we (i) take into account the 
deformations of the system (kinematics), and (ii) accept a 
causal relationship between forces and deformations 
(constitutive relation). He admits that the body is (perfectly) 
rigid, but the supporting medium is flexible, and this 
according to a linearly elastic law. Kinematical 
considerations tell him that the base of the body still defines 
a single plane after deformation, and this plane is 
characterized by three independent parameters – the 
generalized displacements of the modern terminology. If the 

foundation is homogeneous, the combination of this 
kinematical result with the constitutive assumption of linear 
elasticity leads to the conclusion that the forces exerted by 
the body in the foundation also define a single plane. Euler 
calls this his General Principle. Using this principle, the 
three equilibrium equations are now written in terms of the 
three independent parameters characterizing the plane of the 
forces, which Euler takes as unknowns. This yields a unique 
solution to the problem. We should also mention that Euler 
is careful and meticulous enough to assume small vertical 
displacements, so that he can adopt linear kinematical and 
equilibrium equations. 

From this brief description, we plainly see that Euler’s 
procedure meets the basic requirements to be considered a 
(specialized version of the) displacement method (tailor-
made for the specific problem under consideration). Indeed, 
(i) Euler identifies three generalized displacements and the 
corresponding equilibrium equations; (ii) he merges 
kinematical and constitutive relations into a single principle; 
(iii) his governing equations are obtained by inserting this 
principle into the equilibrium equations. This combined use 
of statics, kinematics, and constitutive assumptions is truly 
remarkable. In a sense, it is a change of paradigm in the 
sense given by Hall [12]. One point deserves further 
comment. Euler’s unknowns are not the generalized 
displacements, but the parameters defining the plane of the 
forces. From a mathematical viewpoint, this is merely a 
change of variables – we easily recognize the parameters 
defining the plane of the forces as the generalized 
displacements scaled by the stiffness of the foundation. We 
must also bear in mind that Euler’s goal is to find the forces 
exerted on the support. Therefore, he proceeds directly to 
what we call today the post-processing phase, bypassing the 
determination of the displacements. Moreover, the 
displacements depend on the stiffness of the foundation, 
whereas the forces do not – setting up the unknowns as he 
did, he avoided the need to assign a definite value to this 
stiffness. 

But is Euler really sure of the solution he is proposing 
for the “problem of supports”? Is he able to describe the 
path that leads him to the solution and to explain why it is 
correct? According to Benvenuto, he is not [11, pp. 442-
444], since he writes that his solution remains valid in the 
case of a rigid foundation – therefore, he does not regard the 
deformable foundation as a fundamental feature of both the 
problem and the solution method he devised. We believe 
this is a misinterpretation of the Eulerian text. To settle the 
question, we need to look more closely at §§ 4 - 5 of Euler’s 
memoir, where he lays down the foundational ideas of his 
method. These paragraphs are at the heart of Benvenuto’s 
criticism. 

Reading Euler’s Latin – Did he really know what he was 
talking about? 

After briefly describing an elegant geometrical solution to the 
statically determinate tripod problem (a weight resting on 
three non-collinear supports), Euler attacks the “much more 
difficult”  case of four supports, whose solution “seems 
entirely indeterminate and slippery.” At the beginning of § 4, 
he introduces the notion of a deformable foundation. Indeed, 
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a rigid foundation precludes a unique solution to this 
problem, although we must acknowledge that Euler nowhere 
makes such a statement explicitly: 
 
“… we shall conceive that the plane or soil on which the 
weight rests is not so rigid that it cannot be impressed upon, 
but instead that it has been covered, so to speak, with a 
cloth, into which the feet can slightly penetrate.” 
 
The cloth is introduced as an analogy, an image with 
increased visual impact to convey the fundamental notion of 
a deformable soil – while the impressions on the soil may be 
imperceptible, and thus hard to imagine, the deformation of 
the cloth is easily visualized. Notice that Euler carefully 
chooses his words: he writes “quasi panno obductum” 
(“covered, so to speak, with a cloth”). 

Euler proceeds by postulating a linearly elastic law for 
the foundation: 
 
“… it may be safely assumed that the [depth of the] 
impression under each foot will be proportional to the force 
exerted on the soil and, once this principle is accepted, all 
the work can be easily explained.” 
 
Benvenuto argues that Euler seems to regard this law as 
“self-evident,” and not as a “specific hypothesis about the 
behavior of material under stress” [11, pp. 443-444]. But we 
must also consider that linear elasticity is the simplest 
constitutive assumption that he may adopt in order to solve 
the problem, and Euler’s eager desire to arrive at an easy 
explanation of his method is manifest throughout these first 
paragraphs of the memoir. 
 

Euler closes § 4 with the following remark: 
 
“However, so that no one is troubled by this cloth yielding 
to pressure, even though we have assigned softness to it, we 
may nevertheless diminish this softness as much as we like, 
so that the nature of that soil on which the weight actually 
rests is finally reached.” 
 
Benvenuto’s critical appraisal of the memoir rests mainly on 
his interpretation of these words. According to him, when 
Euler writes “indolem soli illius”  (“the nature of that soil”), 
he is referring to a rigid soil, and therefore the cloth’s 
softness may be diminished until it vanishes. Benvenuto 
infers from this passage that “the assumption of a soft plane 
is [to Euler] only a conceptual device, useful for 
understanding what happens in a rigid plane, and the 
transition from one case to the other is ruled by a common 
argument in mathematics,” a passage to the limit [11, pp. 
444]. We cannot find in Euler’s text objective grounds for 
such a conclusion. Instead, we believe that Euler is referring 
to the soil “not so rigid that it cannot be impressed upon” of 
the preceding sentence, whose deformability, however, is 
much smaller than that of the imaginary cloth. Thus, Euler 
nowhere writes that his solution remains valid in the limiting 
case of zero flexibility of the soil. On the contrary, a 
deformable foundation is a fundamental feature of both the 
problem and the solution method he devised. 

In § 5, Euler writes: 
 
“Let us then consider four feet, the ends A, B, C, D of which 
stand on the plane, and, upon bearing, penetrate that cloth 
by small distances Aα, Bβ, Cγ, Dδ, which must be assumed 
as infinitely small. This being laid down, firstly the points α, 
β, γ, δ, like the ends of the feet, will still be located on a 
single plane; secondly, these small distances Aα, Bβ, Cγ, Dδ 
are taken as being proportional to the pressures exerted on 
the soil by each foot. Therefore, if at the points A, B, C, D 
we erect on the plane vertical segments Aα, Bβ, Cγ, Dδ that 
are proportional to the pressures at those points, it is 
necessary that the points α, β, γ, δ, lie on a single plane. 
And this is the principle upon which we may safely build our 
entire investigation, all the more so because neither the idea 
of that cloth nor the impressions made upon it are taken into 
account any longer; indeed, these ideas were invoked solely 
for the sake of aiding our reasoning.” 
 
Euler begins this paragraph by assuming that the vertical 
displacements of the feet are very small, an hypothesis that 
will allow him to linearize the equilibrium and kinematical 
equations, and that is physically justified by the minute 
deformability of the soil. He then establishes “the principle 
upon which we may safely build our entire investigation.”  In 
doing so, Euler combines kinematics (“points α, β, γ, δ, like 
the ends of the feet, will still be located on a single plane”) 
with constitutive assumptions (“these small distances Aα, 
Bβ, Cγ, Dδ are taken as being proportional to the pressures 
exerted on the soil by each foot”), and since he is tacitly 
assuming that the constant of proportionality is everywhere 
the same, he concludes that the reactions under each foot 
define a plane. (In §6, Euler generalizes this result to a 
“plane base of arbitrary figure” and calls it his “General 
Principle.”) Euler’s remark at the end of §5 is again at the 
heart of Benvenuto’s criticism. Indeed, according to this 
Italian scholar, Euler is stressing that his principle, “though 
obtained from the example of a yielding surface, is 
independent of it, because the hypothetical displacements 
«have been introduced solely for the sake of aiding our 
imagination»” [11, p. 444]. In other words, Benvenuto 
believes that Euler is once again denying the inescapable 
need to take into account the deformability of the supporting 
medium. We consider this to be a misinterpretation of 
Euler’s words. In our opinion, what he is in fact saying is 
that, after having established his principle, he does not need 
to keep bringing up (“venire in censum” – literally, “to 
record on a list”) the image of the cloth, which was just a 
simile, an analogy, used to illustrate his thought and to help 
his readers grasp something that was, at the time, a 
conceptual innovation (“in subsidium nostrae imaginationis”). 
Moreover, the General Principle into which he has merged 
kinematics and the constitutive response of the soil can be 
subsequently used as a black box and inserted directly into 
the equilibrium equations – as we have seen earlier, this is a 
distinctive feature of the displacement method. If we now 
recall that the problem to be solved was that of finding the 
forces exerted on the support – Euler is not interested in the 
magnitude of the displacements per se, as long as they are 
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small –, it is readily recognized that the precise (but finite) 
value of the soil’s uniform stiffness is immaterial. 

The irony in all this is striking: the cloth that Euler 
meant solely as a visual aid turned out to be, two centuries 
later, greatly responsible for the misinterpretation of his 
memoir and the failure to grasp its full significance. The 
irony is all the more striking because Jacob Bernoulli’s 
transcript of Euler’s notebooks [9] does not contain a single 
reference to this imaginary cloth. This argument is by no 
means decisive, and we build our entire case without 
alluding to it, since it is not possible to assess the nature and 
extent of Jacob Bernoulli’s editorial work without direct 
access to Euler’s notes. 

One final remark: even if we accept Benvenuto’s 
interpretation (which we do not), we must grant Euler the 
priority in creating the displacement method. According to 
Truesdell, “the first principle of historical research in 
mechanics [is] that the meaning is to be inferred from the 
use, since successful application has always preceded 
statement of the principle being applied” [13, p. 244]. Euler 
not only devised a solution method to the “problem of 
supports” that exhibits the basic features of the displacement 
method (even if we concede that he could not satisfactorily 
explain how and why it worked), he also successfully 
applied it to several examples. 

The displacement method catches the train 

Two subsequent milestones in the early development of the 
displacement method deserve to be briefly mentioned here. 

After the publication of Euler’s memoir, the next 
significant contribution to the development of the 
displacement method is to be found, half a century later, in 
Navier’s celebrated lecture notes [5]. Navier applies the 
method to the analysis of the plane trusses shown in Figure 1, 
and this represents a distinct progress – the focus moves 
from the support reactions on a solid body to the internal 
forces in the bars of a framework, an important and pressing 
engineering problem at a time of rapid expansion of the 
railway networks in Europe and North America. Another 
important development is the consideration of different 
“elasticity forces” (i.e. different flexibilities) for each bar. 
Equally important is the fact that Navier openly states the 
combined use of statics, kinematics and elasticity. 

The complete systematization of the displacement method 
for truss analysis, allowing for any number of nodes and 
bars, was accomplished by Clebsch in section 90 of his treatise 
of 1862 [3, 4]. He introduced stiffness coefficients and their 
 

 
 

FIGURE 1 
PLANE TRUSSES ANALYZED BY NAVIER [5]. 

 

determinants, foreshadowing the matrix formulation of the 
method that would take place in the 20th century [14]. 
Clebsch also considered frameworks with bars subjected to 
bending (section 91 of his treatise), but he did not achieve in 
this case the same degree of closure and elegance. 

LECTURING THE DISPLACEMENT METHOD TODAY  

In civil, mechanical and aerospace engineering courses, 
students are usually first exposed to the displacement method 
in the discipline of strength of materials. The method is 
further developed in subsequent disciplines on structural 
analysis, usually with the adoption of a matrix formalism, 
and its application is extended to non-linear and time-
dependent problems. Very often, the finite element method 
is presented as a generalization of the displacement method. 

In most textbooks on strength of materials – for 
definiteness, we choose Dias da Silva’s Mechanics and 
Strength of Materials [15], but nearly any other would serve 
as well, except that some are less careful to state exactly 
what is done and what the assumptions are – the presentation of 
the displacement method follows a problem-based approach. 
The problem with two degrees of kinematical indeterminacy 
shown in Figure 2, slightly adapted from [15, p. 168], is 
typical of such an approach. It can be rightfully regarded as a 
two-dimensional analog of Euler’s Problem 2, in which he 
considers a weight resting on a plane by means of four point 
supports, arranged according to the vertices of a 
parallelogram – the role of the deformable foundation is now 
played by the props. (A horizontal support has been added 
with the sole purpose of properly restraining the structural 
model against rigid body displacement.) 

Let us assume that the vertical displacements are small 
and the props do not buckle, so that the hypothesis of 
geometric linearity holds. For convenience, we define a 
horizontal axis along the beam, with origin at an arbitrary 
point O. 

The equilibrium equations for this simple model are 
 

 
3

1
j

j

f G
=

=∑ , 
3

1
j j

j

x f X G
=

=∑  (1) 

 
where fj is the compressive force in prop j, G is the applied 
load, and xj and X denote the abscissas corresponding to the 
prop j and to the load G. Incidentally, students are expected 
to recognize that the moment equilibrium condition is 
 

 
 

FIGURE 2 
RIGID BEAM SUPPORTED BY THREE VERTICAL AND LINEARLY ELASTIC PROPS. 
 

G 

1 2 3 



Coimbra, Portugal September 3 – 7, 2007 
International Conference on Engineering Education – ICEE 2007 

configuration-dependent; it is written for the undeformed 
configuration as a consequence of geometric linearity, a 
frequently overlooked detail at undergraduate level. 

The force fj in prop j is related to its axial shortening ∆j 
through the linear elastic constitutive relation 
 
 j j jf k ∆= , (2) 

 
where the proportionality constant kj is called the stiffness of 
the prop. 

Kinematics provides the final set of equations: 
 
 1 2j j jd D D x∆ = = + , (3) 

 
where dj is the downward vertical displacement of the top 
extremity of the prop and D1, D2 are the two generalized 
displacements characterizing the final configuration of the 
rigid beam (the downward vertical displacement of the origin 
O and the clockwise rotation of the beam). 

Equations (2) and (3) – constitutive relation and 
kinematics – may be combined to give 
 

 ( )1 2 1 2j j j j j jf k D D x D k D k x= + = + . (4) 

 
Now, if we assume, as Euler tacitly did, that the props have 
equal stiffnesses (k1 = k2 = k3 = k), then (4) reduces to 
 

 ( )1 2 1 2j j j jf k D D x D k D k x xα β= + = + = + . (5) 

 
Therefore, the forces in the props define a straight line, and 
this is precisely (a specialized version of) Euler’s General 
Principle! Inserting this result into the equilibrium equations 
(1), we get 
 

 ( )
3

1
j

j

x Gα β
=

+ =∑ , ( )
3

1
j j

j

x x X Gα β
=

+ =∑ , (6) 

 
wherefrom the unknowns α, β (generalized displacements 
D1, D2 scaled by the stiffness coefficient k) are readily found. 
Finally, substituting the values of α and β back into (5) 
yields the forces fj in the props, which do not depend on k. 

We may generalize the above problem in a number of 
ways. The immediate one is to consider different stiffnesses 
for the props. Euler’s General Principle no longer holds, but 
the basic features of his solution procedure remain entirely 
valid. In this case, the forces fj depend on the ratios of the 
stiffness coefficients kj, but not on the absolute magnitudes 
of these quantities. 

Another generalization, in the spirit of Euler’s General 
Problem, is to replace the props by a continuous linearly 
elastic foundation, with stiffness k per unit length. This is 
known today as Winkler’s model and is shown schematically 
in Figure 3. We see that the problem changes its form – the 
rigid beam no longer stands on a finite number of point 
supports, but rests instead on a continuous base that we may 
view as consisting of infinitely many linearly elastic vertical 
springs. Nevertheless, the degree of kinematical indeterminacy 

 
 

FIGURE 3 
RIGID BEAM ON A LINEARLY ELASTIC FOUNDATION. 

 
still equals two and the solution procedure outlined above 
requires only minor adaptations – basically, the summations 
have to be replaced by integrals, as Euler acutely observes in 
§ 12 of his memoir. 

Finally, returning to the problem shown in Figure 2, we 
could consider, in addition to the applied force G, indirect 
actions such as temperature changes, settlement of supports 
or prestress in one of the props – these indirect actions do not 
appear in Euler’s memoir, but they can be accommodated in a 
straightforward and natural way. 

These examples illustrate a friendly and non-abstract 
presentation of the fundamental concepts associated with the 
displacement method, which turns out to be strongly related 
to the historical origins of the method. On this firm 
foundation, we can build more effectively a general 
procedure for the linear analysis of kinematically 
indeterminate skeletal structures, and not just rigid bodies 
connected by elastic links. We believe that the pedagogic 
message is clear: History of Science can be used to enhance 
the effectiveness of engineering education. 

CONCLUSIONS 

The inception and early unfolding of concepts and methods 
may often be of considerable pedagogic value, since they 
then appear reduced to their very core, or crystallized in 
special circumstances – but not too special, in which case 
we might deflect the students from the general theory rather 
than lead them towards it. We illustrated this point with a 
specific example taken from the undergraduate civil 
engineering curriculum – we showed that the approach 
typically used to introduce the displacement method of 
structural analysis closely follows Euler’s line of reasoning 
in the memoir De pressione ponderis in planum cui 
incumbit. The paper includes an in-depth analysis of but a 
small part of this text – the one dealing with the fundamental 
ideas underpinning the displacement method –, accompanied 
by a translation of the passages that are central to our 
interpretation. Based on this analysis, we claim that Euler 
should be credited, in plain justice, with the creation of the 
displacement method. 

A final remark: Euler’s memoir contains other seminal 
concepts, not touched upon in the present paper – for 
instance, the problem of unilateral supports, of such great 
importance in soil mechanics and foundation engineering, 
and the definition of the core (or kern) of a cross-section. 
Euler’s approach to these matters might again prove 
valuable in the classroom. 

 

G 

k 



Coimbra, Portugal September 3 – 7, 2007 
International Conference on Engineering Education – ICEE 2007 

REFERENCES 

[1] L. Euler, “De pressione ponderis in planum cui incumbit,” Novi 
Commentarii Academiae Scientiarum Imperialis Petropolitanae, Vol. 
18, 1774, pp. 289-329. Reprinted in Leonhardi Euleri Opera Omnia, 
2nd Series, Vol. 9, pp. 1-34. 

[2] A. Samuelsson and O. C. Zienkiewicz, “History of the stiffness method,” 
International Journal for Numerical Methods in Engineering, Vol. 67, 
No. 2, 2006, pp. 149-157. 

[3] A. Clebsch, Theorie der Elasticität fester Körper. Leipzig: Druck und 
Verlag B.G. Teubner, 1862. 

[4] A. Clebsch, Théorie de l’ Élasticité des Corps Solides, French 
translation by B. de Saint-Venant and A.A. Flamant, with additional 
notes by B. de Saint-Venant. Paris: Dunod, 1883. 

[5] C. L. Navier, Résumé des Leçons Données à l’École des Ponts et 
Chaussées, Première Partie, 1826. 

[6] I. Todhunter and K. Pearson, A History of the Theory of Elasticity and 
of the Strength of Materials, Vol. 1. Cambridge: Cambridge 
University Press, 1886. 

[7] C. L. Navier, “Sur des questions de statique dans lesquelles on 
considère un corps supporté par un nombre de points d’appui 
surpassant trios,” Bulletin des Sciences par la Société Philomatique de 
Paris, Vol. 11, 1825, pp.35-37. 

[8] S. P. Timoshenko, History of Strength of Materials, with a Brief 
Account of the History of Theory of Elasticity and Theory of 
Structures. New York: McGraw-Hill, 1953. 

[9] L. Euler, “Von dem Drucke eines mit einem Gewichte beschwerten 
Tisches auf einer Fläche. Aus den Papieren des Sel. Leonhard Euler 
gezogen, von Jacob Bernoulli,” Archiv der reinen und angewandten 
Mathematik, Vol. 1, No. 1, 1795, pp. 74-80. Reprinted in Leonhardi 
Euleri Opera Omnia, 2nd Series, Vol. 9, pp. 407-412. 

[10] V. A. Vagliente and H. Krawinkler, “Euler’s paper on statically 
indeterminate analysis,” Journal of Engineering Mechanics –ASCE, 
Vol. 113, No. 2, 1987, pp. 186-195. 

[11] E. Benvenuto, An Introduction to the History of Structural Mechanics, 
Part II: Vaulted Structures and Elastic Systems. New York: Springer-
Verlag, 1991. 

[12] A. R. Hall, Revolution in Science 1500–1700. London: Longman, 
1983 (Portuguese edition by Edições 70, 1988). 

[13] C. A. Truesdell, “Whence the law of moment of momentum?” in 
Essays in the History of Mechanics. Berlin: Springer-Verlag, 1968, 
pp. 239-271. 

[14] C. A. Felippa, “A historical outline of matrix structural analysis: a 
play in three acts,” Computers & Structures, Vol. 79, No. 14, 2001, 
pp. 1313-1324. 

[15] V. Dias da Silva, Mechanics and Strength of Materials. Berlin: 
Springer-Verlag, 2006. 

 


