
Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

Using of the Technology of Parallel Programming
for Solving Applied Problems

Gulnar Balakaeva

Department of Information Technologies
Kazakh-British Technical University, Almaty, Kazakhstan

g.balakaeva@kbtu.kz

Galymbek Seralin 1

1 al-Farabi Kazakh National University, Department of Computing Sciences, Almaty, Kazakhstan, gseralin@gmail.com

Abstract – It is known that there are various ways of
realizing parallel calculations. In this paper we consider
calculations for the heat transfer process in a rectangular
region. The parallelization mechanism is presented in
along with results of calculations and of testing.

Index Terms – boundary conditions, communicator,
filtration, hosts, Laplace equation, MPI, MPICH,
MPI_Comm, MPI_COMM_RANK, MPI_COMM_SELF,
MPI_COMM_NULL, MPI_COMM_WORLD, MPMD,
nodes, parallelize, processes, rank, TCP/IP.

Introduction

Recently there has been increasing attention paid to
the speed and accuracy of executing modules to solve
problems arising from the mathematical modeling of
physical problems. So, powerful supercomputers or
multiprocessing computers have been created, which allow
speeding up of the performance of the set operations and that
therefore increase the speed of achieving results.

Development of high-efficiency technical
equipment has occurred in the following directions: vector-
processor computers (CRAY companies, Cray Research);
array-parallel computers with allocated memory; parallel
computers with common/shared memory; computers with
cluster architecture. As a result program applications
supported by high-efficiency technical equipment are used in
various areas of science and economy.

Parallel data processing is based on the use of
parallel processing algorithms. To be able to work with the
special software and to create our own products using
parallel algorithms and parallel programming languages it is
necessary to acquire the corresponding knowledge.

In the model of programming which is provided by
MPI, the program generates some processes cooperating
among themselves by means of references to subroutines of
transfer and reception of messages. Usually at the
initialization of MPI programs a fixed set of processes is
created, and each process is carried out on a separate
processor. In these processes different programs can be
carried out, therefore the model of MPI programming is

sometimes named MPMD model (Multiple Program
Multiple Data).

The problem

We consider the problem of finding the stationary
distribution of the temperature of a square plate [0, 1] x [0,1].

The distribution of the temperature is governed by
Laplace’s equation with two independent variables.

0// 2222 =∂∂+∂∂=∆ yuxuT . (1)

To define a unique solution we need to specify

boundary conditions, which we choose to be:

at x = 0.0 and any values of y: T = 100-200*y,
at y = 0.0 and any values of x: T = 200*x-100,
at x = 1.0 and any values of y: T = 100-200*y,
at y = 1.0 and any values of x: T = 200*i-100.

To solve the problem, we discretise the plate using a

2-dimensional grid N×N. Let N=50. The distances between
the nodes are then h =1/N=0.02. The grid contains 2500
nodes, in 196 of which the value of the temperature is set
according to the boundary conditions.

The problem consists in finding the temperature at
all internal nodes by iteration. (For N=50 there will be 2304
nodes.) Various schemes are available but here we employ
Jacobi’s method. Initial values of the temperature in the
internal nodes of a grid are initially arbitrarily set to zero.

Hardware and Software Environment

For parallelizing the problem we employ the
following hardware/software:
• MPICH version 1.2.5
• Operating System Windows NT/2000 or XP
• Visual Studio 6.0 Enterprise Edition
• Host processors (in the case here, we employ 4 hosts,

resulting in 4 communicating processes)
• Local area network (LAN) to connect hosts with TCP/IP

sockets.

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

In the work described here we use MPICH version
1.2.5. MPICH (MPI CHamelton), is an implementation of
the MPI specification which supports work across a wide
range of platforms and with various communication
interfaces, including TCP/IP.

MPICH includes library and header files and
contains more than one hundreds subroutine. Delivered with
the MPICH package are resources for visual debugging and
profiling of parallel programs.

An interaction area (area of communication) is
defined by a group of processes. All processes which belong
to an interaction area can communicate with each other. This
set of processes describes a special information structure,
referred to as a communicator.

A communicator describes the context of the
communications for operation of an exchange. Each context
sets a separate interaction area. Messages are accepted in the
context in which they have been sent, and the messages sent
in different contexts do not interfere with each other.
Processes connected with an MPI program can cooperate, if
they are connected with one communicator (See Figure 1).
The value of the communicator used by default
(MPI_COMM_WORLD) corresponds to all processes of the
given program. To all processes in the field of interaction
whole positive numbers from 0 up to some maximum are
assigned, and the number of concurrent processes can be
obtained by means of a call to the subroutine
MPI_COMM_RANK.

FIGURE 1

Interaction area of MPI program. Here Pr0 – Pr5 are processes.

For the processes entering into an existing
interaction area new areas of interaction can be created. The
numbering/labeling of processes in different interaction areas
is independent. The communicator describes an interaction
area. For any one area several communicators can be used.
The standard communicator MPI_COMM_WORLD is
created automatically.

In the programming language C++ communicators
are constants of type MPI_Comm. In addition to
MPI_COMM_WORLD the following values of MPI_Comm
are also available: MPI_COMM_SELF - communicator,

containing the originating process only, and
MPI_COMM_NULL – an empty communicator.
 The number of a process is referred to us as its rank.
The rank is used by each process to, for example, identify a
process to transfer messages to. Generally speaking, each
process can belong to several interaction areas but in each
one it will only have one rank.

For parallelizing a given task we build a cluster
with 4 hosts using the operating system Windows XP (SP 2).
All characteristics of the hosts can be seen in Table I:

TABLE I

CHARACTERISTICS OF HOSTS

Host name Processor RAM IP address/
Subnetwork Mask

NIIT8_1

NIIT1_4

NIIT8_2

NIIT7_1

Intel (R) Pentium(R)
4 CPU 2,66 GHz

Intel(R) Pentium(R)
4 CPU 2,66 GHz

Intel(R) Pentium(R)
4 CPU 2,66 GHz

Intel(R) Pentium(R)
4 CPU 2,66 GHz

 256 MB

256 MB

256 MB

256 MB

10.44.0.32 /
255.255.255.0

10.44.0.31 /
255.255.255.0

10.44.0.33 /
255.255.255.0

10.44.0.34 /
255.255.255.0

Solution

The new value of the temperature in each node can

be found with the help of a crosswise computing pattern
(Jacobi iteration).

Ti,j := (Ti-1,j + Ti+1,j + Ti,j-1 + Ti,j+1) / 4 (2)

Initial values of the temperature at internal nodes of

the grid we set to zero and then iterate until convergence.
Note that in (2) according to Jacobi’s method we use values
at the old iteration on the right-hand side when computing
the updated values on the left-hand side.

To speed up the process of the solution of the given
problem we use a parallelization method with 4 processes.
To implement this solution we have written a program in
C++. For communication non-blocking communication was
used for data transfer (send and receive).

To create a process cluster using the operating

system Windows XP I we perform the following steps:

• Install MPICH 1.2.5 and Visual Studio 6.0 Enterprise
Edition to all computers which are to be employed in the
cluster

• With the help of Visual C ++ 6.0 Enterprise Edition
create a C++ project. Compile the project to generate an
exe-file.

• Copy this exe-file to all other computers in directory
"C:\temp".

• Start MPICH versions 1.2.5 and choose the “MPICH
Configuration tool” option. See Figure 2.

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

• Press the "SELECT" button and choose from the list of
computers which appears those that are to be used in the
cluster. See Figure 3.

• Press the "Apply" button and the connection will have
been obtained. See Figure 4.

• These steps should be done for all computers which are
to be used.

• Now start MPICH 1.2.5 and choose MPIRun
• Choose the "…" button to start the problem
• Now specify the number of processes. In our case the

number of processes is equal to 4. Press the "run" button
and a window will appear for authorization. Login as
administrator of a host and the problem solution starts.

FIGURE 2.
Configuration of MPICH 1.2.5.

FIGURE 3.
Connection of 4 hosts in MPICH 1.2.5.

FIGURE 4.
Connection in MPICH 1.2.5.

The results for the solution of our given problem can be seen
in Figure 5.

FIGURE 5
 Distribution of Temperature in Rectangular Area.

The way forward

We have developed a programme for numerical

calculation using the technology of parallel MPI
programming version 1.2.5. Results for the calculation of
solution of Laplace’s equation (1) on a unit square with
appropriate boundary conditions are shown in Figure 1. This
computing experiment has shown that results of calculations
obtained with the application of parallel programming
technologies can lead to an increase in speed of performance
(4 times with the program for the solution of Laplace’s
equation). This relatively straightforward application needs
to be extended to our ultimate goal - to perform parallel
calculations for a set of coupled PDEs (partial differential
equations) that arise from the mathematical consideration of
a problem of filtration.

