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Abstract – Our work attempts to define and implement a 
generic experimentation language for conducting 
automatic experiments on existing simulations. Our 
objective is to be able to use a simulation, which may 
have been created independently, as a component in 
which students can perform experiments under different 
operating conditions. The experiments are first defined in 
a high-level language and then conducted on the 
simulation in an automatic way. The experimentation 
language should implement conditional execution of 
instructions that depend on the state of the simulation, 
running multiple copies of the simulation synchronously, 
and on-the-fly graphical comparison of results. This 
paper describes the elements required by such an 
experimentation language in order to provide the 
flexibility required for a wide variety of experiments. We 
also introduce our implementation of this language on 
the modeling tool Easy Java Simulations. Finally, we 
show examples of non-trivial experiments defined using 
this language and conducted on this software platform. 
 
Index Terms – Easy Java Simulations, Experimentation 
Language, Experiments, Simulations, Virtual Laboratories. 

I.  INTRODUCTION  

The ultimate goal of building a simulation for a virtual 
laboratory is that of performing interesting experiments with 
the simulation. A typical definition of experiment states that 
“an experiment is the process of extracting data from a 
system by exerting it through its inputs” [1]. This definition 
needs to be made more general when our experimentation 
system is a computer simulation. Indeed, in a computer 
simulation, not only all its inputs and outputs are accessible, 
but modern modeling tools even allow for a direct control of 
the model so that its behavior can, to a certain extent, be 
changed in run-time. Traditionally, users of virtual 
laboratories are expected to perform experiments by 
interacting with the simulations’ graphical user interface 
(GUI). But this frequently poses important limitations.  

Consider, for instance, a computer simulation of the PI 
control of the level of a tank. An experiment for this 
simulation could consist of the following actions:  
1. Set initial conditions. 

2. Let the simulation evolve until the initial set point is 
reached with a 5% tolerance. 

3. Increase the set point by 50%. 
4. Let the system evolve until the exact moment when the 

level reaches the new set point with a 5% tolerance. 
5. Compute the time elapsed in step 4. 
6. Repeat steps 1 through 5 one hundred times with 

different sets of PI parameters. 
7. Conduct an analysis on the results thus obtained. 

This set of actions cannot be executed trivially, or in 
reasonable time, by a user interacting with the GUI. Some 
actions might be simply impossible without computer help. 
Instead, it would be preferable that users could count on a 
flexible experimentation language that allowed them to 
instruct the simulation to automatically run this experiment. 
This way, the virtual laboratory is treated as a complete 
system in which all variables are observable, and all 
variables and the simulation’s execution itself are 
controllable.  

Our work defines a standard set of actions that computer 
simulation experiments should implement. We do so by 
designing an API (Application Programming Interface) or set 
of instructions which simulations should conform to in order 
to provide standard experimentation capabilities. Some 
modeling or simulation environments already include 
scripting facilities that allow users to run certain types of 
experiments [2]. Among them ACSL, EcosimPro, and 
Dymola. For instance, Dymola’s manual states that “…there 
is a script facility that makes it possible to load model 
libraries, set parameters, set start values, simulate, and plot 
variables by executing scripts”. We are inspired by these 
previous experiences but have also added our own 
requirements to create a universal, full-fledged specification 
that provides more general and flexible features. 

In order to test the viability of our language, we have 
implemented it using the modeling tool Easy Java 
Simulations, (Ejs). Ejs is a software tool that helps create 
interactive simulations in Java [5]. It has been designed 
specifically to be used by scientist without special 
programming skills, and has proven to simplify the creation 
of simulations for scientific and engineering purposes [11]. 
Simulations created with Ejs are complete Java applications 
or applets that can be distributed independently of Ejs. Our 
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goal is that these simulations implement our experimentation 
language. 

The paper is organized as follows. Section II lists the 
requirements for our experimentation language. Section III 
discusses the implementation of the language done using 
Easy Java Simulations. Section IV shows two examples that 
use our experimentation language in practice. Finally, 
Section V discusses the results and describes further work. 

II.  ELEMENTS OF THE LANGUAGE  

Our objective is to be able to control every aspect of a 
simulation as if it were a completely observable and 
controllable component. Our experimentation language 
should then contain the following categories of elements, or 
instructions, in its API: 
A. Elements to run one or more instances of a simulation.  
B. Elements to access variables and routines. 
C. Elements to specify algorithms. 
D. Elements to control the execution of the simulation. 
E. Elements for user input. 
F. Elements to allow for comparison of results. 

We now discuss each of these categories in more detail. 

A. Elements to run one or more instances of a simulation 

Users may want to run different simulations, or several 
instances of the same simulation, at the same time in order to 
compare results among simulations. The API should then 
provide an instruction to launch any simulation users have 
access to, returning a unique identifier for it.  

Users should also be able to specify whether they want 
the running simulations to execute either synchronously or 
asynchronously. Synchronized simulations advance (step) 
through their evolution cycle at the same pace. In particular, 
if the simulations use the same increment of time for each 
step, their internal time will remain synchronized. 

B. Elements to access variables and routines 

Users need to be able to read and to set the value of the 
variables of the model of a simulation at any time. This can 
only be restricted if the simulation designer has declared 
some of the model variables as non-accessible (private). The 
same principle applies to routines or functions (methods) that 
the simulation defines. Users should be able to easily obtain 
information about available variables and methods. 

C. Elements to specify algorithms 

The API should allow users to perform any required 
computation. These computations can make use of variables 
and methods from the simulation model, as well as of 
additional ad-hoc (local) variables defined by users. The 
language must provide for standard algorithmic constructions 
to allow users to write complex algorithms, if required. 

D. Elements to control the execution of the simulation 

Users may want to control the simulation execution. This 
includes not only standard play and pause instructions that 
start/stop the simulation, but also instructions to run the 
simulation until a given condition is met, such as (in human 
language): “run the simulation until the level of the tank is 

greater than 10”. The experimentation environment should 
then be able to pass over the control of the computer 
resources to the running simulation and wait until the 
simulation meets the given criteria and pauses, thus giving 
control back to the experiment. Another feature required is 
the possibility of planning events in the future, such as: “run 
the simulation increasing the set point by 50% when t = 10”. 

E. Elements for user input 

In occasions, partial results of the experiment may require 
user input. Elements in this category should allow displaying 
messages or asking users to enter one or more numeric 
values, choose a given option out of several offered, or 
confirm an action. 

F. Elements to allow for comparison of results 

In experiments where a simulation is run several times, each 
under different conditions, users will most likely want to 
store intermediate or output results in order to compare them 
at the end of the different runs of the simulation. Hence, the 
API should provide some kind of memory where to store, 
and later retrieve, these values. Also, the API should provide 
a means to visually compare output data from a simulation 
produced in form of a graph. For instance, users can be 
interested in comparing the plots of the evolution in time of 
the response of a PI control under different tuning 
parameters. 

III.  IMPLEMENTATION  

We chose Easy Java Simulations for our implementation 
because it offers several appropriated characteristics. Ejs 
falls into the category of code generators, which makes it 
possible to use for our API all the constructions provided by 
a standard programming language. The fact that Ejs is based 
on Java has also been crucial in our work because it helps 
manage several instances of a simulation, or address 
compound objects (such as graphs) in them, in an object-
oriented way. Finally, users of Ejs can easily inspect, 
understand, and, if necessary even modify, other people’s 
simulations, which greatly increases their observability and 
controllability.  

Easy Java Simulations is a modeling and authoring tool 
that allows specifying the model and the view for a 
simulation at a very high-level of abstraction. We have added 
to Ejs the possibility of defining experiments for existing 
simulations by loading the XML file that describes the 
simulation (which may have been created by another person) 
and adding pages defining experiments for it. When the 
simulation is re-generated, it adds to its standard menu an 
entry for each of the experiments thus defined. Users simply 
select the experiment as one menu option. When running the 
simulation as an applet, the experiments can also be accessed 
using hyperlinks embedded in the HTML page that contains 
the simulation. This possibility provides a way to include, in 
a very natural way, the execution of experiments on the 
simulation in curricular material developed in HTML form. 

To implement our experimentation language, we have 
added to Easy Java Simulations new predefined methods that 
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provide the necessary functionality. We now describe how 
we implemented the elements in each of the categories of the 
API. 

A. Elements to run one or more instances of a simulation 

Our API provides two instructions to create a running 
instance of a simulation: 

public Model runSimulation ( ); 
public Model runSimulation (String classname); 

These are instance methods of a predefined object called 
_simulation, which points to the simulation itself. The first 
method creates and runs a copy of the simulation from which 
the experiment is started. The second method creates a copy 
of the simulation with the given class name. Every Java 
simulation is an object of a given class and several classes 
can be packaged together in compressed archives called JAR 
files. Users can instantiate any simulation which is in the 
same JAR file as the original simulation or in any other JAR 
file included in the simulation’s class path. Ejs simulations 
can add JAR files to their class path using the Additional 
Libraries field in the model editor of Ejs.  

Simulations created using any of these two methods 
appear automatically on the computer screen and are by 
default synchronized with (we call them subordinates of) the 
original one. Subordinates of a simulation can be freed 
(made to run asynchronously) using the _simulation instance 
method: 

public void freeSimulation (Model subordinate); 

Finally, subordinate simulations can be disposed of by 
calling one of the following instance methods of _simulation: 

public void killSimulation (Model subordinate); 
public void killAllSimulations ( ); 

Although seldom required, a single simulation can 
create more than one subordinate simulation, which can in 
turn create their own subordinate simulations. All 
subordinate simulations in the same family are, by default, 
synchronized. Exiting any of them, exits all the simulations 
in the family. 

B. Elements to access variables and routines 

Experiments are created and run as part of the model of a 
simulation. This gives them direct access to the model’s 
variables and methods. Both versions of the runSimulation 
method described above return an object of the 
corresponding model class, which is an implementation of 
the generic Java interface org.opensourcephysics.ejs.Model, 
included by default in every Ejs simulation’s JAR file. Users 
need to typecast this object into a local variable of the correct 
type in order to access the model’s public variables and 
methods. The standard object-oriented “dot” mechanism of 
Java can then be used to address any variable or method in 
the simulation model.  

As an example, suppose that we are running an 
experiment from a simulation whose model is of the class 
MySimModel, and which has a variable called x and a method 
called action. The experiment can then use constructions of 
the form: 

// Create a subordinate instance of this simulation 
MySimModel sub = (MySimModel) _simulation.runSimulation( ); 
x = 1.0;          // Sets the x variable of this simulation 
action( );        // Invokes the action method of this simulation 
sub.x = 0.0;   // Sets the x variable of the subordinate 
sub.action( ); // Invokes the subordinate’s action method 
_play( );        // Plays both simulations synchronously 

C. Elements to specify algorithms 

We used the fact that Ejs is a code generator tool to allow 
users to write any valid Java construction in the algorithms 
of the experiments. These constructions can, and typically 
do, make use of the methods defined in our experimentation 
API. When the simulation is generated, Ejs compiles the 
Java code for the experiments together with the rest of the 
simulation model. 

D. Elements to control the execution of the simulation 

Ejs already included a set of predefined methods that allow 
users to control the execution of a simulation. These methods 
are described in the Ejs manual and feature: 

void _play( );     // Plays the simulation 
void _pause( );  // Pauses the simulation 
void _step( );     // Advances by one time step 
void _reset( );    // Completely resets the simulation 

Because experiments are run in a Java thread different to 
that of the simulation itself, our API has extended this set 
with the method: 

void _playAndWait ( );  

which has a similar effect to _play in the original set, but 
delays the execution of code after this instruction until the 
simulation pauses.  

A simulation can be paused by either user interaction, an 
invocation of the _pause method included in the original 
simulation, or by using one of the following new 
instructions: 

void _scheduleCondition (String conditionName);  
void _scheduleEvent (String eventName);  

These two methods introduce the possibility of 
executing code whenever a given condition is satisfied. This 
code can be used to simply pause the simulation or to 
execute other more complex actions. The parameter of both 
instructions refers to an instance of one of the new 
constructions called scheduled condition and scheduled 
event, respectively, which can be defined using a special 
editor provided by Ejs. Both constructions consist of two 
methods each. The first method determines whether a given 
condition is satisfied by the model state. The second method 
defines a user-defined action that will be invoked when this 
condition is met.  

There are some differences between both constructions. 
Scheduled conditions are determined by a method returning a 
boolean value, which is tested after every simulation step. If 
the method returns a true value, the corresponding action is 
executed. Scheduled events are associated to any of the 
systems of ordinary differential equations (ODEs) defined by 
the model as part of its evolution algorithm, and are triggered 
by the change in sign of a positive function of the variables 
involved in that system of ODEs. When the function returns 
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a negative value, the simulation detects the event, goes back 
in time to find the exact instant in time when the function 
crossed zero, and applies the event action at that instant. In 
this sense, scheduling an event is similar to adding new 
events to the original system of ODEs in runtime. Differently 
to normal events, though, scheduled events (and scheduled 
conditions, as well) disable themselves automatically once 
they take place. 

 E. Elements for user input 

Our API provides a new predefined _input object that 
implements a simple mechanism for user input during an 
experiment. This object has the following instance methods: 

int confirmMessage (String message, int type);  
int selectOption (String message, String options);  
boolean inputVariables (String message, String variables);  

The first of these input methods is used to display a 
message the user must acknowledge or prompt the user to 
confirm a yes/no type question. The second method is used 
to request the user to select an option out of several possible 
ones. The third method displays a table in which the user 
needs to input a value for each of the variables specified by a 
comma separated list of names. These names create internal 
variables in the _input object whose values can be retrieved 
using the getter methods: 

boolean getBoolean (String variable);  
int getInt (String variable);  
double getDouble (String variable);  
String getString (String variable) 
Object getObject (String variable);  

The last of these getter methods can be used to retrieve 
arrays or other Java objects with a textual representation. The 
variables can be assigned values previously to user input 
using the setter methods: 

void setValue (String variable, boolean value);  
void setValue (String variable, int value);  
void setValue (String variable, double value);  
void setValue (String variable, Object value);  

These values will then be displayed as default values by the 
input table. Differently to the _memory object discussed 
below, variables in the _input object are cleared at the 
beginning of each experiment. 

F. Elements to allow for comparison of results 

The API also provides a new predefined object called 
_memory, which can be used to store and retrieve data while 
running an experiment or across different experiments. The 
memory has the same setter and getter methods as the _input 
object, if only its variables remain accessible from 
experiment to experiment unless its instance method: 

void clear ( );  

is explicitly invoked. Data in the memory can be used for 
post-experiments analysis. 

Comparing graphs is possible thanks to the object 
oriented nature of Java. Any graphical element in the 
simulation view is a public object whose methods can be 
accessed just like any other method of the simulation. We 
have added a new instruction to our API that allows cutting 

and pasting drawables elements from one graphic panel to 
another: 

void reparentDrawable(String childName,  
                                     ControlElement newParent); 

Drawables is the generic name we use to refer to objects 
which draw on graphic panels. ControlElement is the parent 
class of all graphic elements in the view of a simulation 
created with Ejs. This method can be used to effectively 
display a drawable object which is originally part of, and 
receives data from, one simulation into the drawing panel of 
the other simulation. See Experiment II below for an 
example of use. 

IV.  EXAMPLES  

We show in this section two examples of experiments 
created for a simulation of the PI control of the level of a 
tank. The simulation’s typical behavior for default Kp and Ti 
values of the PI controller is shown in Figure 1. 

  
 

FIGURE  1 
TYPICAL RESPONSE OF THE SINGLE TANK SMULATION. 

The dynamics of this single tank simulation is determined by 
the Dynamics page of ordinary differential equation (ODE) 
shown in Figure 2.  

 
FIGURE  2 

DYNAMIC EQUATIONS OF THE SIMPLE TANK SYSTEM.. 

The control signal u is computed in the second page of the 
evolution of the model using the following code:  

if (automaticMode) { 
  // P + I action 
  u = Kp*(setPoint - level) + integral;  
  if (u<0) u = 0; 
  // Update integral action 
  integral = integral + Kp*dt/Ti * (setPoint - level); 
} 
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which implements a digital PI action. 

EXPERIMENT I. Executing a scheduled event 

We now want to define a very simple experiment consisting 
in doubling the set point when the time equals 200 seconds. 
For this, we first define a scheduled event in the dedicated 
panel of Ejs, as shown in Figure 3. 

 
FIGURE  3 

EDITOR FOR SCHEDULED EVENTS. 

As the code in the figure shows, the event is triggered when 
the time exceeds the time planned for the event (200 
seconds). When the simulation detects the crossing 
condition, it goes back in time through the Dynamics ODE to 
find the exact state at instant t = 200. It then executes the 
event action which doubles the set point. Notice that events 
defined using this editor are independent of events the 
simulation may have defined as part of its model and are not 
activated until explicitly set by an _scheduleEvent instruction. 
As mentioned above, scheduled events are automatically 
removed from the ODE list of events once they take place. 

We then turn to the panel for experiments in Ejs’ 
interface and create a new page with the code displayed in 
Figure 4. 

 
FIGURE  4 

DEFINITION OF EXPERIMENT I IN EJS. 

If we now run the simulation the popup menu of the main 
drawing panel includes an entry for the experiment. See 
Figure 5. (Experiment II defined in the next subsection is 
also displayed.)  

  
FIGURE  5 

RUNNING EXPERIMENT I FROM THE SIMULATION INTERFACE. 

Selecting this experiment in the menu produces the results of 
Figure 6.  

  
FIGURE  6 

OUTPUT OF EXPERIMENT I. 

When the simulation finally stops, the _memory object stores 
the values of the set point and the level. These values can be 
used for further studies. 

EXPERIMENT II. Comparing graphic outputs 

We now want to compare the responses of the PI control 
with different Kp and Ti parameters. A simplistic solution 
would be to run the simulation by hand twice, once for each 
set of parameters, take snapshots of the evolution graphs, and 
then compare them looking at each graph side by side. A 
better procedure, though, is to conduct an experiment that 
automatically creates a second copy of the simulation, 
changes its parameters, and then runs both simulations 
synchronously, displaying the graph of their responses in the 
same plot. This is what the following, more elaborate, 
experiment does: 

_reset(); // Resets the simulaton 
// Creates a subordinate simulation 
SingleTank subordinate = (SingleTank) _simulation.runSimulation(); 
subordinate.Kp = 30;  // Sets the subordinate’s Kp  
subordinate.Ti = 1.0;  // Sets the subordinate’s Ti 
java.awt.Color color = java.awt.Color.RED; // Chooses a color 
// Changes the color of the subordinate’s level trace 
subordinate._view.levelTrace.getStyle().setEdgeColor(color); 
// Reparents the subordinate's level trace into the plotting panel 
subordinate._view.reparentDrawable("levelTrace", 
                                              _view.getElement("plottingPanel")); 
subordinate._view.dispose(); // Hides the subordinate's view 
_play(); // plays both simulations 

The output of this experiment is shown in Figure 7. 
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FIGURE  7 
OUTPUT OF EXPERIMENT II. 

IV.  DISCUSSION OF RESULTS 

We are in the process of using our implementation to test our 
initial design creating different types of experiments of 
practical use in teaching Automatic Control and other topics 
(such as Physics). Our initial results show our 
implementation is both simple and flexible, allowing us a 
great deal of control of the running simulation. The object-
oriented nature of Java has been crucial in making our 
implementation very natural. The way Easy Java Simulations 
lets users inspect simulations created by other people and 
access all its variables and methods is also of great 
importance to reduce to a real minimum the documentation 
work required by the author of the original simulation.  

In a more general context, we think our API can be the 
basis for the definition of a standard experimentation 
language to which other modeling and simulations tools 
could adhere to. This is our goal in the coming future. 

The current, experimental version of Ejs that supports 
the features described in this paper can be downloaded from 
http://www.um.es/fem/publications/2007/Ejs070507.zip. The 
experiments of Section IV are in the SingleTank.xml file in 
the _examples/Experiments directory. 
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