
Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

A Self-Practice Online Tool for Teaching and
Learning Computational Skills in Engineering

Curricula

Abbas El-Zein, School of Civil Engineering, University of Sydney, Australia, aelzein@usyd.edu.au,
Tim Langrish, School of Chemical Engineering, University of Sydney, Australia, tim.langrish@usyd.edu.au

Nigel Balaam, School of Civil Engineering, University of Sydney, Australia, nbalaam@civil.usyd.edu.au

Abstract - Computer programming is a skill that
engineering students are expected to acquire in their
undergraduate studies. Many engineering schools and
faculties have moved towards including engineering
programming as part of a first-year course taught to
large engineering classes. This approach is effective in
rationalizing resources and improving the cost-
effectiveness of course delivery. In addition, it can lead to
wholesale quality improvements in teaching and learning.
However, the size of classes and the large variety of
student backgrounds can lead to difficulties in achieving
the required learning outcomes. Flexible learning has
been shown to be potentially effective in addressing such
issues. We describe the design and development of a
WebCT-based self-practice online tool (SPOT) to support
student learning of computer programming. The tool is
divided into three components which focus on three
aspects of computer programming with increasing levels
of difficulty: a. computer programming syntax, b.
understanding the way computer programs work and c.
writing computer programs. We present the way the tool
is integrated into the overall learning flow of the course
and its role in course assessment. Finally, we discuss
statistics of usage and usefulness in achieving learning
outcomes, drawn from a survey of students and make
specific recommendations concerning the implementation
and development of such tools.

Index Terms – e-learning, computer programming,
mathematics, large classes

INTRODUCTION

A new paradigm of online education has spawned a rich
literature on the effectiveness and efficiency of various forms
of electronic teaching tools, from full online courses [e.g., 1]
to web-assisted, lecture-based courses [e.g., 2,3]. The ability
of these modes of teaching and learning to achieve desired
engineering learning outcomes and their efficiency in
achieving that aim remain open questions. Evidence points to
an improvement in learning efficiency, although students
with access to online resources are not necessarily more
likely to achieve learning outcomes [4-6]. Although the
number of distance courses has risen significantly over the
last decade, mixed modes of delivery, with face-to-face
settings supported by online tools, remain the dominant form
of online learning on campus. There is clearly a need in the
literature for greater exploration of flexible modes of

learning including e-tools, when teaching computational
skills to engineering students.

Programming skills are now deemed essential in most
engineering schools. Both structured languages, such as
FORTRAN and C, and computational tools such as
MATLAB, have been used in engineering curricula. Hodge
and Steele [7] surveyed engineering programs in the US and
found that FORTRAN had lost its dominance and
computational tool were increasingly employed by educators
because of the trend towards integrating various
computational functions in a single environment. At the
Faculty of Engineering of University of Sydney, MATLAB
was adopted in an introductory computational course
(ENGG1801) for first-year engineering students for two
reasons: a. its ability to integrate programming with matrix
operations and graphics and b. the relative simplicity of its
programming tools which offer the possibility of introducing
students to fundamental programming concepts without
requiring them to grapple with other aspects of structured
programming such as dimensioning and compilation.
However, the development of programming skills by first-
year engineering students has proved to be a complex task,
especially in large 500+ student classes, and a small but
significant proportion of students (20%) failed to perform
satisfactorily.

This paper discusses the design, development and
implementation of an e-learning tool into ENGG1801 and
offers a student-centered model for integrating e-learning
with other course resources, including face-to-face
interaction. The aim of this integration is to increase the
number of students who achieve the required learning
outcomes and reduce the percentage of students who fail the
course. While other methods for improving learning
outcomes have been suggested in the literature (e.g., a crash
course preceding the main course as described by
Christensen et al [8]), e-learning remains more attractive
because of its potential cost-effectiveness in terms of student
time and financial expenditure.

CURRICULAR CONTEXT

ENGG1801 is made of two components which run in
parallel: Computer-Aided Design (CAD) with SolidWorks
and programming using MATLAB. The first component

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

occupies around 40% of the course, while the second
accounts for 60%. These percentages reflect the division of
hours of lectures and lab sessions, as well as assessment
weights. In this paper, we focus on the programming part of
the course and will not discuss the CAD component.
ENGG1801 is aimed at first-year civil, mechanical and
chemical engineering students. The number of students
enrolled in the course have increased, from 450 in 2004 to
550 in 2007.

The programming part of the course aims to develop students
skills at writing simple computer programs that can solve
simple mathematical and engineering problems. By the end
of the course, students are expected to be able to write
sequential programs using the following families of
commands: input and output, conditional structures such as
“if” and “case”, loop structures such as “for” and “while”,
modular structures such as “functions” and “subroutines”
and, finally, graphic functions intrinsic to MATLAB.
Although MATLAB is used in teaching, course instructors
make it clear to students that the purpose of the course is not
to teach MATLAB per se, but programming more generally.
Skills and programming concepts used in one sequential
programming language are still valid in another, with
minimal adjustment, in the same way that driving skills
acquired with one car brand are transmissible to another.
Students are given one hour of programming lecture per
week, after which they attend a computer lab session, with
around 50 students in each session, where they are asked to
solve a programming problem, with help from tutors.

A number of issues arose in the first two deliveries of the
course in 2004 and 2005. The first issue was related to tutor-
student contact. Although three tutors were allocated for
each MATLAB programming session, with a ratio of 16
students per tutor, some students clearly felt they needed
more tutorial support. Given budgetary constraints, it was
impossible to reduce this ratio. Instead, an additional tutorial
session for programming, called a clinic session, was
introduced in 2006 and was run by the lecturers, rather than
the tutors. Attendance was voluntary and open to all students
who needed extra support. In addition, tutors were asked to
provide more pro-active guidance to students at the
beginning of each session.

A second issue was related to programming quizzes. Three
quizzes were given during the semester. Given the large
number of students, a quiz system, introduced in 2004 and
followed in 2005, had students sitting their quizzes during
their lab sessions, on specially designated weeks. Tutors
invigilated and marked papers, immediately after students
finished writing their answers on the computer screen. A
simple marking system (0 to 3) was used. The system was
effective in that marking was done quickly and the effort was
widely distributed between tutors. There were however three
drawbacks. First, students were worried about inconsistency
of marking between tutors, and there was no way of
guaranteeing such consistency, given the large number of
tutors—despite written instructions given to tutors, face-to-
face meetings between tutors and instructors prior to the

quizzes, and the simplicity of the marking system. Second,
since ten different tutorial sessions per week ran to
accommodate the 500 or so students, ten different versions of
each quiz had to be written. Third, invigilation was rather
difficult, despite the tutors’ best efforts, given the proximity
of students seats in the computer lab.

A third issue, perhaps the most significant one, became clear
to us during the semester in 2004, and was confirmed in the
final exam and during 2005. The most difficult aspect of the
course was programming. The failure rate in the course stood
at around 18% and the majority of students who failed did so
as a result of programming. A number of measures were
taken in response to this, including changes that allow a
more gradual introduction of programming concepts, as well
as more exercises solved in the class and the lecture notes.

The above three issues—tutoring, assessment and learning of
programming concepts—are obviously related. However, for
all their complexity, it is obvious that adequately-designed e-
learning resources can play a major role in addressing them.
This is particularly the case given the large number of
students and the inevitable budgetary constraints in any
curricular activity. The question asked in small, more
conventional classroom environments where the teaching
and learning community consists primarily of a teacher and a
few dozen students is: “how best to achieve the learning
outcomes of the course?” This question is best developed in
a slightly different form for larger classes and more complex
teaching and learning communities which include
coordinators, instructors, tutors, administration staff, as well
as a few hundred students. A more pertinent question in this
case is: “what is most the cost-effective way of achieving
learning outcomes among the highest possible number of the
students, hence reducing the degree of failures in the
course?” A self-practice online tool (SPOT), which addresses
all three issues raised above, has been designed and
developed, and is offered here as part of a possible response
to this question.

SELF-PRACTICE ONLINE TOOL (SPOT):
RATIONALE AND ARCHITECTURE

We developed an online tool with the following objectives:
a. to put in place better flexible learning resources for
students.
b. to help students assess their own progress and provide
with a clear path for seeking additional help.
c. to better integrate lectures and lab sessions.
d. to improve the quality of assessment through quizzes.

A database of online questions (DOQ1) with around 300
multiple-choice question was developed. The questions were
grouped under nine categories: MS Excel basics, matrix
algebra, matrix MATLAB operations, and the following sets
of commands in MATLAB: text, conditional (“if” and
“switch”), “for” loops, “while” loops, “function” and
graphics. Each category was further divided in two groups
corresponding to two levels of difficulty. Each question

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

No

Lecture introduces
the concept

Tutored lab work:
student applies the concept

to a problem

Understood
concept?

No

Yes

Ask tutors there
and then:
satisfied?

Seek
individual
help from
lecturer

Practice with online
questions (SPOT)

Understood
concept?

Yes

Ready for Assessment for this
Concept.

Onto the Next Concept!

No
Yes

No

Yes

Internal Feedback:
Instructors Raise

in Lectures Internal Feedback:
Instructors-Tutors

Exchange Post question
on the

discussion
forum:

satisfied?

Go to clinic:
satisfied?

Answer
queries

Student reads lecture notes

REGULAR
LEARNING FLOW

HOW TO DEAL WITH
DIFFICULT CONCEPTS?

Face to Face with
Lecturers. Large

Class

Flexible Online
Activity

Tutored Lab Work:
Individual Activity with
Instant Help Available

Face to Face with
Lecturers. Small Classes

or One on One

Colour Legend:

FIGURE 1
LEARNING ACTIVITY MAP FOR THE COURSE

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

carried five possible answers, as well as a few lines of
justification for the correct answers and usually a note on
each of the incorrect answer. DOQ1 questions assessed the
student’s understanding of the syntax and role of each set of
commands. DOQ1 was later augmented with DOQ2 and
DOQ3. DOQ2 is made of multiple-choice “skeletal”
questions which presents students with small programs and
ask them to fill in missing commands or spot errors in the
programs. DOQ3 carries programming questions which asks
students to write computer programs to solve given problem.
Hence, DOQ1, DOQ2 and DOQ3 take the students through
the process of learning programming commands,
understanding how computer programs work and writing
computer programs. (We will refer generically to DOQ1,
DOQ2 and DOQ3, by DOQ, in the remainder of the paper).
DOQ was then used to generate two WebCT tools:

a. A Self-Practice Online Tool (SPOT1, SPOT2 and

SPOT3, corresponding to DOQ1, DOQ2 and DOQ3,
respectively, and collectively called SPOT) that could be
accessed online by students enrolled in the unit of study
at any time. The student could choose a particular
category and test his or her ability, by attempting to
answer the question, checking whether he or she had
answered correctly and get specific feedback on each
answer, as well as general feedback on the question.

b. A quiz tool (QT) that would be used to run 3 quizzes over

the semester. Quiz 1 would be drawn from DOQ1, quiz 2
from DOQ 1 and DOQ 2, while quiz 3 is entirely made of
DOQ 3 questions.

Once DOQ was developed, SPOT and QT were easily set up
within the WebCT environment, at no extra cost. SPOT and
QT were assigned a specific role within a new course
learning map, developed to address the problems discussed
earlier (see Figure 1). The figure shows the regular learning
which students probably went through most of the times.
After attending a lecture introducing a new programming
concept, the students read the corresponding lecture notes
and lecture slides, went to the lab session to solve the
corresponding problem and attempted the corresponding
SPOT questions. Whenever they experienced difficulties,
they could speak, one-on-one, to tutors during lab sessions,
post a question on the discussion board for the course and go
to the clinic session. Students could also choose to email or
visit the course lecturers in their offices. Questions on the
discussion board, as well as communication between tutors
and instructors, helped the teaching staff keep track of the
kind of difficulties arising in the class, which may then be
specifically addressed by instructors during lectures. DOQ1
and SPOT1 were developed in time for semester 1 2006.
DOQ2 and DOQ3, with SPOT2 and SPOT3, were developed
in time for semester 1, 2007. The Respondus program was
used for developing the questions, which were then exported
into WebCT.

DISCUSSION

Half-way through the semester in 2006, students were asked
to fill in an anonymous questionnaire about the course,
including the following 3 questions about SPOT1 (since
SPOT2 and SPOT3 had not been developed by then):

1. HOW OFTEN have you accessed SPOT1 since the
beginning of the semester:

a. At least twice a week
b. Less than once a week
c. Less than once every two weeks
d. Not at all

2. HOW USEFUL did you find SPOT1 in helping you to
learn programming concepts:

a. Very useful
b. Fairly useful
c. Not so useful
d. Not useful at all

SPOT1 Access Frequency

0%
10%

20%
30%

40%
50%

a b c d e

SPOT1 Usefulness

0%

10%

20%
30%

40%

50%

a b c d e

SPOT1 Feedback Usefulness

0%

10%

20%

30%

40%

a b c d e

FIGURE 2

STUDENT RESPONSE TO SPOT1

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

3. How useful did you find the FEEDBACK on answers in
SPOT1?

a. Very useful
b. Fairly useful
c. Not so useful
d. Not useful at all

Around half the class, 236 students, filled the questionnaire.
Survey statistics for the above questions are shown in figure
2. While 90% of respondents used SPOT1 less than once a
week, 45% of respondents found SPOT to be very useful,
while around 75% found SPOT and its feedback system to be
at least fairly useful. Selection bias, with more involved
students more likely to answer the questionnaire, may have
increased the percentage of students using SPOT frequently
and finding it useful. However, this must be qualified by the
fact that the survey was conducted half-way through the
semester of the first delivery and concerned only SPOT1. A
survey will be conducted towards the end of the semester in
2007, covering SPOT1, SPOT2 and SPOT3 and its results
are expected to be more conclusive.

Students feedback scores for the ENGG1801 improved
significantly from 2005 to 2006. While SPOT1 was not the
only change introduced into the course after 2005 and could
not therefore be given total credit for the improvement, it
was certainly the most significant innovation.

The new tools brought a major reduction in complaints about
the fairness of marking of quizzes. Even when long answers
rather than multiple-choice questions were used in quiz 3, the
online submission could now be transferred to a select group
of tutors who performed the marking, hence ensuring more
consistency. The tool provided students with more learning
resources and enhanced the assessment quality of the course.
The multiple functionality of such e-tools is a key factor in
their cost-effectiveness and justifies more powerfully the
required development cost. A more challenging question that
we will pursue this year and the following one is the extent
to which the tool has helped in better achieving the
programming learning outcomes of the course.

ACKNOWLEDGMENTS

The Dean of the Faculty of Engineering at the University of
Sydney, Professor Greg Hancock, kindly provided the first
funds for SPOT development. The Teaching-Improvement
Fund program of the University of Sydney awarded us a
grant for the extension of SPOT1 into SPOT2 and SPOT3.
Sam Smith and Chi Yan Tang played a vital role in the
project by writing the questions for the databases of SPOT1,
SPOT2 and SPOT3. James Underwood conducted valuable
quality checks on SPOT2 and SPOT3. Stephen Sheely and
his superbly competent WebCT staff at the University of
Sydney provided us with indispensable technical support in
dealing with many rather complex issues related to the
WebCT and Respondus software.

REFERENCES

[1] Bourne J, Harris D, Mayadas F. 2005. Online engineering education:
learning anywhere, anytime. Journal of Engineering Education
94(1):131-146.

[2] Avouris NM, Tselios N and Tatakis EC. 2001. Development and
evaluation of a computer-based laboratory teaching tool. Computer
Applications in Engineering Education 9(1):8-19.

[3] Stern F, Xing T, Yarbrough DB et al. 2006. Hands-On CFD educational
interface for engineering for engineering courses and laboratories.
Journal of Engineering Education 95(1):63-183.

[4] Nguyen J and Paschal CB. 2002. Development of online instructional
module and comparison to traditional teaching methods. Journal of
Engineering Education 91(3):275-283.

[5] Rosenberg J. 2000. Assessing online student learning via Dantes test..
Virtual University Journal 3(1):1-7.

[6] Dutton J, Dutton M and Perry J. 2001. Do online students perform as
well as lecture students? Journal of Engineering Education 90(1):131-
142.

[7] Hodge BK and Steele WG. 2002. A survey of computational paradigms
in undergraduate mechanical engineering education. Journal of
Engineering Education 91(4):415-417.

[8] Christensen K, Rundus D, Fujinoki H, Davis D. 2002. A crash course for
preparing students for a first course in computing: did it work? Journal
of Engineering Education 91(4):409-413.

