
Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

Learning to program - difficulties and solutions

Gomes, Anabela1,2, Mendes, A. J.2
1ISEC – Engineering Institute of Coimbra - Polytechnic Institute of Coimbra

anabela@isec.pt
2CISUC – Department of Informatics Engineering - University of Coimbra

toze@dei.uc.pt

Abstract - Programming is a fundamental part of
computer science curriculum, but it is often problematic.
The high drop out and failure rates in introductory
programming courses are a universal problem that
motivated many researchers to propose methodologies
and tools to help students. Although some of these tools
have been reported to have a positive effect in students
learning, the problem still remains mostly unsolved. We
think that there are several reasons that cause this
learning problem. Maybe the most important is the lack
of problem solving abilities that many students show.
They don’t know how to program, because they don’t
know how to create algorithms, mainly due to their lack
of general problem solving abilities. This and other
causes to student difficulties are discussed in this paper.
Some possible solutions are proposed, so that problems
can be reduced.

Index terms - Educational Technology, Learning Styles,
Programming Teaching and Learning,

INTRODUCTION

It is well known that many students have difficulties in
programming learning. Programming is a very complex
subject that requires effort and a special approach in the way
it is learned and taught. To become a good programmer, a
student must acquire a series of abilities that go well beyond
knowing the syntax of some programming language.

Several approaches and tools have been proposed
aiming to support programming learning in different ways.
Although we find reports of positive results as an outcome of
some tools [1], none of them has a general use. In fact, the
problem remains relatively unchanged as we continue to find
reports about the difficulties many students experience when
learning basic programming.

Experience shows that the problem starts for many
students in the initial phase of learning, when they have to
understand and apply abstract programming concepts, like
control structures, to create algorithms that solve concrete
problems. Particular attention is necessary in this initial
stage, not only in the development of programming specific
abilities, but also (and maybe above all) in the improvement
and/or consolidation of knowledge and abilities that should
have been acquired in previous years. These include generic
problem solving abilities, logic reasoning and so on.

THE PROBLEM

I. The teaching methods

The traditional teaching methods do not seem adequate for
many students needs, for different reasons:
• Teaching is not personalized. It would be desirable to

have a teacher always available to allow more
personalized student supervision. Immediate feedback
during problem solving and detailed explanation of less
understood aspects could probably help many students.
However, in reality it is impossible to give this type of
support due to time constraints and common course
sizes.

• Teachers’ strategies don’t support all students’
learning styles. People learn in several ways and have
different preferences to approach new materials. In
traditional education all students must learn at the same
rhythm and in accordance to the teacher’s pedagogical
strategies, which are based on the teacher's learning
style. Different students have different learning styles
and can have several preferences in the way they learn.
Some may regard learning as a solitary process while
others may prefer a more dynamic learning
environment, for instance through discussions with their
peers. Additionally, some subjects may demand a
particular learning approach but, without guidance,
students will tend to adopt the style they prefer or which
has served them best in the past. It is an important
responsibility for the teacher to ensure that the students
adopt the most appropriate learning approach for the
subject at hand [2].

• The teaching of dynamic concepts through static
materials. Programming involves several dynamic
concepts that many times are taught through static
means (projected presentations, verbal explanations,
diagrams, blackboard drawings, texts, and so on). For
some students this is a problem, as they fail to
understand program dynamics through this type of
materials.

• Teachers are more concentrated on teaching a
programming language and its syntactic details,
instead of promoting problem solving using a
programming language. The purpose of an
introductory programming course should be to increase
students’ programming abilities. However, many times
teachers and students focus more in the programming
language syntactic details. The language should only
serve as a tool to express ideas and algorithms.
However, an enormous amount of syntactic details are
taught, normally before the students have a good

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

understanding of some important programming
concepts. In our view, the language used in introductory
programming courses should be chosen considering
pedagogic suitability and not popularity in industry or
some other reason.

II. The study methods

We consider that the study methods followed by many
students are not suitable for programming learning. We can
identify several aspects where improvement could happen:
• Students use incorrect study methodologies. Many

students are used to solve problems from other
disciplines through the memorization of formulas or
procedures. Sometimes students memorize formulas,
without a complete understanding of the underlying
concepts, just knowing that a particular formula should
be used to some type of problem. Programming requires
a different study method. It should be essentially
practical and very intensive, quite different from what is
required in many other courses (more based in
theoretical knowledge, implying reading and some
memorization). Some students believe that they can
learn to program mostly through reading a textbook,
failing to understand that their main activity should be
solving as many programming problems as possible.

• Students don’t work hard enough to acquire
programming competences. They are used to subjects
where assisting classes and studying a text book is
enough. However programming demands intense work
extra classes.

III. The student’s abilities and attitudes

• Students don’t know how to solve problems. We think
that the most important cause to the difficulties many
freshmen feel to learn programming is their lack of
generic problem solving skills. The students don’t know
how to create algorithms, mainly because they don’t
know how to solve problems. Problem solving requires
multiple abilities that students often don’t have, namely:
i) Problem understanding - Many times the students try
to solve a problem without completely understand it.
Sometimes this happens because the student has
difficulties interpreting the problem statement and others
simply because students are too anxious to start writing
code and don’t read and interpret correctly the problem
description.
ii) Relating knowledge - Many students don’t establish
correct analogies with past problems and don’t transfer
prior knowledge to the new problems. They tend to
group the problems that have the same superficial
characteristics instead of the same principle.
Consequently, many times students base their solutions
on unrelated problems, leading to incorrect solutions.
iii) Reflection about the problem and the solution - The
students have a tendency to write an answer before
thinking carefully about it. Many times testing is done
superficially and they get satisfied just because the
program works with a data set, without making more
extensive testing.

iv) Lack of persistence - Students often give up solving
a problem if they don’t quickly find a possible solution.
Usually, solving programming problems demands effort
and persistence. However, when facing any difficulty,
many students prefer to ask the solution to a colleague
or simply give up, instead of keep trying solving the
problem. This is especially important, since learning is
more effective when students find the solution, instead
of simply reading the solution.

• Many students don’t have enough mathematical and
logical knowledge. Gomes et al. [3] conducted some
experiments exploring the relationships between
mathematical problem solving competences and the lack
of programming abilities shown by a group of students
that didn’t get approved in their initial programming
course. This experience was carried out during the
second semester of 2005/2006 and the authors
concluded that the involved students had deep
difficulties in several areas, such as basic calculus and
number theory or simple geometric and trigonometric
concepts. The authors also report difficulties in
transforming a textual problem into a mathematical
formula that solves it. Limitations in abstraction level
and logical reasoning were also identified.
We think that mathematical knowledge is very important
for programming and it is possible to find studies ([4],
for example) that evidence some relationship between
programming skills and experience in mathematics.

• Students lack specific programming expertise. Many
students’ programming difficulties are also caused by
programming specific errors and misconceptions.
Sometimes we find students that don’t know how
common programming structures work or have
misconceptions about them. It is also common that
students demonstrate difficulties to detect simple
syntactical and logical programming errors.

IV. The nature of programming

• Programming demands a high level of abstraction.
Programming learning requires skills like abstraction,
generalization, transfer and critical thinking, among
others. Experience has also shown that the problem
starts, in general, in the initial learning phase, when
students are expected to understand and apply certain
abstract programming concepts, like control structures,
to solve problems.

• Programming languages have a very complex syntax.
Programming languages were developed for
professional use and not to support learning. Common
languages are extensive and have many complex
syntactic details to memorize. That complexity requires
that students have to concentrate simultaneously in
algorithm construction and syntactic rules.

V. Psychological Effects

• Students don’t have motivation. Many students don’t
have enough motivation to study programming, because
there is an extremely negative connotation associated
with programming that passes from student to student.
There is the public image of a "programmer" as a

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

socially inadequate "nerd" [2]. Additionally,
programming courses acquire the reputation of being
difficult. So, it is hard to imagine students aspiring to
this image. If students approach a course with an
expectation that it will be difficult, and with a negative
image of those who excel in the subject, it is very hard
to imagine them as being especially motivated. And
students who don’t have an intrinsic motivation will
hardly succeed. [5].

• Students have to learn programming in a difficult
period of their life. Programming is normally taught as
a basic subject in the beginning of a higher education
course, coinciding with a period of transition and
instability in the student’s life. Some authors consider
that programming disciplines are badly located in the
curriculum, because this is a time of many difficulties
and novelties to a new and autonomous life. The type of
subject is already difficult enough when students are
stable so, when placed in a period of transition this can
only contribute to an increase in difficulty [2].

OUR PROPOSAL

How to solve or at least minimize each of the above
discussed difficulties? In our view, this can be achieved
through the development and utilization of a computational
environment that may support students effectively. To reach
this general objective it is necessary to define which
characteristics are necessary to help in each of the mentioned
problems.
• As teaching is not personalized the environment needs

to provide permanent student supervision. The ideal
situation would be to have a tutor to follow student’s
evolution, clarify doubts, and propose problems and
activities. Another important role of the tutor is to
prevent situations that may lead students to give up or
lose motivation. A computational tutor may be
beneficial in the sense that it won’t show negative
sentiments and will always show some tolerance! One of
the teacher’s roles is to motivate students. However,
sometimes this is not easy and motivation lacks in both
parts. Although a computational tutor cannot completely
replace a human tutor, we believe it can contribute to
captivate the students’ attention, keeping them interested
and allowing them to do the activities without
inhibitions!

• Teachers’ strategies don’t support all students’
learning styles. The environment must adapt activities
to each student preferential learning style. This can be
done having different presentation formats to each
activity and adapting interaction strategies to the student
characteristics. The first time students access the
environment they will be asked to register and fill a
questionnaire that allows the identification of that
particular student learning style. There are different
models for this purpose, for example “The Myers-Briggs
Type Indicator (MBTI)” [6], “The Kolb’s Learning
Style Model” [7], and “The Felder-Silverman Learning
Style Model” [8]. The later is widely used and easy to
implement in a computational platform. As its origins

are in the engineering field, we believe it is a good
choice for our environment.

• The teaching of dynamic concepts is usually made
through static material. The environment includes
dynamic computational models representing
programming concepts. However these models should
be in accordance with the preferential learning style of
the student.

• Teachers are sometimes more concentrated on
teaching a programming language and its syntactic
details, instead of promoting problem solving using a
programming language. The environment includes
multimedia tools focused on problem solving and
algorithm development. Algorithms can then be
implemented in any common programming language.
Progress through the different types of problems must be
gradual and progressive. In a first phase the problems
are simple and have some playful dimension to attract
and stimulate students. Gradually problems progress to
more specific domains towards typical programming
problems. Each new problem presented to the student
demands more elaborated solutions, involving more
detailed procedures. The main idea consists in
promoting and evaluating the student’s progress,
through a stimulating and attractive system.

• Students often use incorrect study methodologies and
don’t work hard enough to achieve success in this
type of discipline. To help in this area the environment
must be attractive and include activities that may interest
students. It has many practical problem solving
activities, giving students the possibility to practice with
a lot of diversified activities. Programming is "problem
solving intensive" [9] requiring a significant amount of
effort and different skills. So it is very important to give
students opportunities to practice a lot. It is also
important that after concluding an activity the
environment provides additional questions or activities
to make sure that the student understood the solution
completely. That will allow students to reflect on their
solutions and how they could be improved. This is an
important activity that students rarely do. These
consolidation/reflection questions can be of several
types, for example including textual questions, graphical
representations, and simulations involving some data
changes.

• As Students don’t know how to solve problems the
environment includes many problems in accordance
with the non computational model proposed in [10].
This environment must incorporate the following
characteristics:
i) For each problem, the environment must verify that
the student understood what was asked. This can be
verified, for example, asking the students what the input
is and output data for the problem or asking them to
predict the new output after some changes made to the
problem.
ii) The problems proposed have an increasing difficulty
level maintaining, when possible, some connection with
previous problems. At least the new problems should
maintain some concepts needed to solve some subtasks

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

in previous problems. So, if the environment detects that
the student isn’t able to solve the current activity it can
give hints, such as dividing the problem and connecting
some of the parts with problems previously solved by
the same student. Alternatively, it can also propose
simpler challenges for further practice.
iii) When the student proposes a solution to a particular
problem, she/he will have to face a set of questions or
mini-activities in order to reflect on the proposed
solution. These activities may include, for example, the
adaptation of the student solution, so that it works also
to some variation of the original problem.
iv) Integrating mechanisms that prevent the students
from giving up solving problems. This objective is
pursued through a lot of interactivity with the student,
generating adequate feedback, whenever it is necessary.
The idea is to motivate and encourage them to continue
trying to solve the problem. This can be done in
different ways. For instance, after a long period of
student’s inactivity, the environment can present the
complete solution, asking questions about it.
Alternatively, students can be asked to discover some
errors on a presented solution or to complete parts of an
incomplete solution. The system can also suggest
smaller challenges, based on the problem, making it
easier to solve.

• Many students don’t have enough mathematical and
logical knowledge. The environment includes a set of
challenges that include implicit or explicit mathematical
concepts, especially those concepts that are important
for typical programming problems.

• Students lack specific programming expertise. Many
times there is a gap between generic problem solving
and programming problem solving. Hence it is
necessary that the environment helps students to make
this transition. This can be done essentially in two ways,
namely:
i) Helping and giving hints to students, teaching them
certain aspects of programming problem solving. To do
this the environment can present complete programs for
students to analyze. We think that the best way to learn
to program is trying to write programs from scratch.
However, to study and to test complete programs can
help students to understand how programs work. Also
analyzing the strategies used to solve some problems
can help students in their initial phase of learning to
program. Another useful activity is to analyze programs
that include logical errors usually made by students.
Completing incomplete programs can also be a useful
activity in initial stages, instead of waiting for students
to write entire programs from the beginning. The
environment also includes programming patterns,
representing solutions of common problems in a format
that exemplifies good programming practices.
ii) Allowing students to test their principles, theories and
reasoning. The environment allows the simulation of
students’ algorithms, so that they can verify program
behavior and logical errors. This is done through the
inclusion of the SICAS environment [11], which allows
animated simulation of student built algorithms.

The environment is based on a constructivist approach
of learning, where each student learns at her/his own
pace and progressively constructs her/his own
knowledge. We strongly believe, like many researchers,
that this kind of approach can improve student problem
solving abilities, as well as their critical thinking
capabilities [12].

• Programming demands a high level of abstraction. It
is important that the environment helps to develop the
student’s abstraction capacity. For that, it includes from
everyday problems to more specific problems
concerning the programming domain. It is important that
students learn to recognize patterns in the different
problems, developing their generalization skills. We
think that the non computational model proposed in [10]
promotes the gradual development of students’
abstraction capacity, helping them to relate new
situations with their previous experiences.

• Programming languages have very complex syntaxes.
The environment minimizes aspects inherent to
language syntaxes, emphasizing the algorithmic and
problem solving processes. In this way it creates
conditions for students to concentrate essentially in
solutions without having to take care of complex
syntaxes.

• Students don’t have motivation. We propose a
multimedia environment that includes several types of
problem solving activities. In the initial stages the
activities will have a more playful nature, using
knowledge from diverse domains, as a way to attract
students to the environment. When the student shows
some domain of basic problems, the environment will
propose problems that demand more complex solutions,
including typical programming problems. The objective
is not proposing problems that in a given stage are too
difficult for the student, eventually causing her/him to
lose motivation. It is also important to show the students
that programming is a useful tool to ease people life.
This can be achieved using real life problems as much as
possible.

• Students have to learn programming in a difficult
period of their life. In our opinion, programming
should be preceded by an intensive training in problem
solving. Hence, we think that students should follow at
least a course devoted to problem solving before they
engage in typical programming courses. However, the
Bologna process lead to 3 years programs in many
institutions. As programming is a pre-requisite to many
other courses, it is necessary that it appears early in the
curriculum. In this context, we think that an
environment with a strong problem solving emphasis
can help reduce this problem.
The environment described in this paper is in an initial

development phase. That is why we presented essentially its
specification and the reasoning behind it. As the environment
objectives are mainly pedagogical, we are conducting a few
experiments to help us better define its characteristics and to
more precisely identify the causes of student’s difficulties.

We had already conducted some experiments [11, 14],
trying to determine how the development of mathematical

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

and logical problem solving abilities would impact
programming capacity. In this study we could identify many
students’ problem solving difficulties and relate them with
their programming limitations. These results were analyzed
taking into consideration the students learning styles
preferences. So we already have a precise idea of the type of
activities that should be incorporate and the way to do so
according to the different learning styles.

However our experiments were restricted to problem
solving aspects and we did not address the way students
acquire knowledge. To complement this study, we are also
analyzing common teaching and learning approaches. To do
so, we collect strategies used by programming teachers and
analyze how they can contribute to the development of
students’ problem solving capacity. We also plan to
investigate how to improve teaching strategies in
introductory programming courses, taking into account
students’ learning styles.

Additionally, we also intend to verify how students
approach programming learning, how they see its importance
for their future, how much time they dedicate to
programming learning, and which activities they use to
develop their programming ability, among others. In these
studies we mainly use three basic techniques, namely
observations, interviews and questionnaires, as a way to
collect facts and evaluate attitudes.

Once completed, the environment will also be fully
evaluated, especially in pedagogical terms. It will be
necessary to see how different students use the different
materials and activities and to evaluate their impact in the
development of the student’s programming abilities.

CONCLUSION

There are different reasons why programming learning is
inherently difficult. The question is somewhat complex. We
agree with some authors that say that programming requires
not a single, but a set of skills. Those skills form a hierarchy
[13] and a programmer will be using many of them at any
point in time. In our opinion, the most important for novice
programming students is to develop their problem solving
abilities. So we are developing a computational environment
mainly based on problem solving activities from different
domains. When the student reaches a higher competence
level in generic problem solving, the environment starts to
propose typical programming problems. We believe this is
the best approach as programming education should be
preceded by the development of a sound problem solving
competence.
The environment also tries to adapt itself to each particular
student characteristics, namely taking into consideration
her/his previous work and preferred learning style when
selecting activities and interaction modes that will be used
with that particular student.

REFERENCES

[1] A. Lawrence, A. Badre and J. Stasko, “Empirically Evaluating the Use
of Animations to Teach Algorithms”, in Proc. of the IEEE Symposium
on Visual Languages, St. Louis, MO, October 1994, pp. 48-54.

[2] T. Jenkins, “On the difficulty of learning to program”, in Proc. of the
3rd Annu. LTSN_ICS Conf., Loughborough University, United
Kingdom, August 2002, pp. 53-58.

[3] A. Gomes, L. Carmo, E. Bigotte and A. J. Mendes, “Mathematics and
programming problem solving”, in Proc. of the 3rd E-Learning Conf.
– Computer Science Education (CD-ROM), Coimbra, Portugal,
September 2006.

[4] P. Byrne and G. Lyons, “The Effect of Student Attributes on Success
in Programming”, in Proc. of 6th Annu. Conf. on Innovation and
Technology in Computer Science Education - ITiCSE 2001, United
Kingdom, 2001, pp. 49-52.

[5] C. Bereiter and E. Ng. “Three Levels of Goal Orientation in
Learning”, Journal of the Learning Sciences, vol. 1, nº 3, pp. 243-271,
1991.

[6] I. B. Myers and M. H. McCaulley, Manual: A Guide to the
Development and Use of the Myers-Briggs Type Indicator. Palo Alto,
CA: Consulting Psychologists Press, 1985.

[7] D. A. Kolb, Learning Style Inventory: Technical Manual. McBer and
Company, Boston, 1985.

[8] R. M. Felder and L. K. Silverman, “Learning and Teaching Styles in
Engineering Education”, Journal of Engineering Education, vol. 78, nº
7, pp. 674-681, 1988.

[9] D. N. Perkins, S. Schwartz and R. Simmons, “Instructional Strategies
for the Problems of Novice Programmers”, in R. E. Mayer (ed.),
Teaching and Learning Computer Programming, Lawrence Erlbaum
Associates, 1988, pp. 153-178.

[10] C. Delgado, J. A. Xexeo, I. F. Souza, M. F. Campos and C. E.
Rapkiewicz, “Uma Abordagem Pedagógica para a Iniciação ao Estudo
de Algoritmos”, Anais do Curso de Ciência da Computação, vol. V,
pp. 72-87, 2004.

[11] A. Gomes and A. J. Mendes, “SICAS: Interactive system for algorithm
development and simulation”, in Manuel Ortega and José Bravo (ed.),
Computers and Education in an Interconnected Society, Kluwer
Academic Publishers, 2001, pp. 159-166.

[12] M. Ben-Ari, “Constructivism in Computer Science Education”,
Journal of Computers in Mathematics & Science Teaching, vol. 20, nº
1, pp. 45-73, 2000.

[13] K. D. Sloane and M. C. Linn, “Instructional Conditions in Pascal
Programming Classes”, in R. E. Mayer (ed.), Teaching and learning
computer programming, Lawrence Erlbaum Associates, 1988, pp.
137-152.

[14] L. Carmo, A. Gomes, F. Pereira and A. J. Mendes, “Learning styles
and problem solving strategies”, in Proc. of the 3rd E-Learning Conf.
– Computer Science Education (CD-ROM), Coimbra, Portugal,
September 2006.

