
Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

Learning to Program with ProGuide

Cristiana M. Areias1, António J. Mendes2 and Anabela J. Gomes3

1 Cristiana M. A. Areias, Department of Informatics Engineering and Systems, Polytechnic Institute of Coimbra and CISUC - Department of Informatics
Engineering, cris@isec.pt
2 António José Mendes, CISUC - Department of Informatics Engineering, University of Coimbra, toze@dei.uc.pt
3 Anabela J. Gomes, Department of Informatics Engineering and Systems, Polytechnic Institute of Coimbra and CISUC - Department of Informatics
Engineering, anabela@isec.pt

Abstract - Problem solving and solution planning are
probably the most difficult skills that novice
programming students must acquire. When confronted
with a programming problem many of them fail to create
a solution proposal, even if it is not completely correct.
When that happens many of them loose motivation and
consequently stop working. In this paper we present
ProGuide, a dialogue based tool to support weaker
students to create basic programs. In ProGuide students
are stimulated and guided through a text-based dialogue.
The tool encourages students providing hints, questions,
similar examples and so on, to help students reach the
problem solution. We believe that this tool can help
novice programming students, especially those that have
more difficulties.

Index Terms - Educational technology, Problem solving,
Programming teaching and learning.

INTRODUCTION

Programming courses usually appear in the beginning of
computer science and engineering curricula. This happens
because programming skills are required in several other
courses and students are expected to be able to program [1].
However, computer science educators know that initial
programming courses often present high drop out and failure
rates. In literature it is also possible to find many references
to this major educational problem and its causes. As Carter
and Jenkins say, it is common for student to approach their
final year project determined to avoid programming at all
costs, probably because they either cannot program or
believe that they can not [2]. Learning to program is
recognized to be difficult, since students must develop good
problem solving skills, learn to express themselves in
algorithmic terms and use programming languages that are
often artificial for many of them [3].

It is possible to find in literature several discussions
about the reasons that contribute to learning difficulties [4,
5]. Student mathematics and science backgrounds, student
motivation, class sizes and heterogeneous groups of students
in class, programming language syntaxes are among the most
cited. We believe that the main difficulty for most students is
to compose and coordinate available instructions to create
the components of a program [6, 7]. Many times students
understand basic programming constructs, but are unable to
use them to create coherent programs that solve problems.

We believe that learning to program is essentially
learning to solve problems algorithmically and the
programming language should be just a way to express the
solution. Programming knowledge cannot be directly
transmitted from teacher to students. On the contrary,
students must actively acquire that knowledge [8, 9], which
means that practice of programming is a fundamental activity
for novice students. However, many students find many
difficulties in this initial learning phase, and many are not
able to create solutions to simple problems. This creates
conditions for students to lose motivation and give up trying,
leading to drop out or failure.

As an answer for students learning difficulties, many
researchers have proposed tools and approaches to support
programming teaching and learning. Micro worlds, like
Karel Robot [10,11] and Alice [12,13], try to introduce basic
programming constructs through a familiar environment,
where it is possible to use such constructs to control
movements and other behaviors of some familiar entity (like
a robot). Controlled development environments have also
been proposed, so that students can develop programming
skills in environments less complex than professional tools.
THETHIS [14], X-Compiler [15], DrScheme [16] and BlueJ
[17,18] are examples of such tools. Animation/simulation
educational tools, such as Interactive Data Structure
Visualization [19], the Programming Education System
Based on Program Animation [20], SICAS [21], EROSI
[22], JAWAA [23], JHAVÉ [24], Jeliot 2000 [25], OOP-
Anim [26] and Raptor [27], try to help students to better
understand programs through the utilization of graphical
representations. Another know approach are tools like Lisp
Tutor [28], C-Tutor [29], DISCOVER [30], and ELM-ART
[31], that use artificial intelligence techniques to promote
individualized learning. Some of those tools allow students
to simulate their own programs, trying to help them to find
and correct errors and misconceptions. Although, in our
view, this process of error finding and correction supported
by program simulation tools can be extremely valuable in
educational terms, weaker students can’t take advantage of it,
simply because they aren’t able to create a first solution
proposal that may be simulated and improved. Also, the
majority of those tools emphasize programming language
features rather than problem solving skills and demand
knowledge of a specific programming language, which
weaker students often don’t have. We developed ProGuide
as an attempt to help those students to create their first
solutions, hopping that after this contributes to develop their

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

abilities, allowing them to start creating solutions to simple
programming problems.

ProGuide is a dialogue based tool to support weaker
students to create basic algorithms. It includes a previously
developed algorithm simulation tool, SICAS [21], and a
dialogue based tool that interacts with students during
algorithm development. The idea is to help students to create
a first solution that can then be improved. In ProGuide
students are stimulated and guided through a dialogue. The
tool tries to encourage students, providing hints, questions,
and similar examples. This interaction should make students
reflect and step by step construct their solutions.

In next section we will describe the ProGuide
environment. The third section includes an utilization
example that may help clarify how the tool works. Finally,
we present some conclusions and ideas for future work.

PROGUIDE ENVIRONMENT

ProGuide main goal is to help to reduce the difficulties that
weaker programming students show in the initial learning
stages. When students start programming they must actively
construct knowledge assisted by guidance from teachers and
feedback from others students [9]. Probably the most
effective way to help those students would be to provide
human tutoring that could assist each student during problem
solving, giving support in their reasoning and immediate
feedback on the programs they create [32]. However, this is
usually not possible, due to the large number of students in
classes and the limited number of available teaching staff.

To achieve its goal, ProGuide includes an algorithm
editor/simulator and a dialogue based tool that interacts with
students during algorithm development. ProGuide has
internal structures to store information about problems and
its solutions. It uses that information to interact with the
student when a particular problem is proposed to him/her.

ProGuide interface is divided in tree sections as
presented in Figure 1. The statement of the exercise on top
left side, the tutoring and communication on center left side
and finally the editor/simulator on the right side.

FIGURE 1
PROGUIDE ENVIRONMENT.

In the next subsections we will describe ProGuide main
features.

I. The Editor and Simulator

The editor/simulator was inspired in SICAS, a tool
developed previously in our research group. SICAS [21] is
an educational environment designed to support the learning
of basic concepts of procedural programming. It essentially
allows the design and animated simulation of algorithms
expressed by flowcharts. Like SICAS, ProGuide editor and
simulator is a user-friendly iconic space that supports the
design of algorithms using flowcharts. The option to use
flowcharts was taken because we think this representation is
more appellative, simpler and probably less prone to errors
[33]. Another useful characteristic of flowcharts is their
programming language independence, which allows
ProGuide utilization in courses that use any procedural
programming language.

As mentioned before, ProGuide aims to help students in
their initial learning stage. The problems proposed to
students at this stage are usually simple and require only
basic programming constructs. That is why the editor only
supports input/output, attribution, repetition and selection
structures. When the student inserts one of those constructs
in the flowchart, ProGuide verifies if it is correctly
positioned in the flowchart, if its details are correct (for
example the condition in a selection instruction), and if it
makes sense to solve the proposed problem. This last
verification is very important and is made using information
given by the teacher during problem specification. This
means that the introduction of new problems in the
environment is complex, as the teacher must give enough
information about the characteristics of the expected solution
(for example, saying it must have a repetition with a
selection inside) and also some input data and corresponding
outputs that ProGuide will use to verify if the student
solution works as expected.

FIGURE 2
ALGORITHM SIMULATION.

Whenever the student wants, she/he can simulate the

solution through the flowchart animation. It is possible to
analyze the algorithm behavior, eventually identifying errors
that may have to be corrected. During animation, the

Editor / Simulator
Tutoring and

Communication

Statment

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

flowchart element being executed is highlighted and the
student can see the variable’s current values and the output
produced by the algorithm (figure 2).

II. Tutoring and Communication

The communication that ProGuide establishes with the
students tries to help, encourage and guide them during
algorithm design. This is made through hints, examples and
questions designed to help students thinking correctly about
the problem and its solution. Questions used are generally
simple, but they may guide student’s reasoning about the
problem. For example, we use questions like:

• Which variables are known and unknown in the
problem?

• Which information can be obtained from the
problem description?

• Which data must be received from the user?
• What must be calculated?
• What must be presented to the user?
• Which instructions must be inserted in each

step?

We believe that this kind of guidance can be useful to
solve a particular problem, but also to develop problem
solving habits that the students can use in other situations.

Communication with students is made using a subset of
Portuguese natural language. Natural language processing is
complex and difficult, so it possible that students give
unexpected answers. In this case, ProGuide answers with
“Sorry, I don’t understand” or “Sorry, we aren’t in the same
context”, inviting the student to give an alternative input. To
reach our objectives it is enough to use a small subset of the
Portuguese language, and there is no need to support very
complicated statements.

When interacting with the student ProGuide frequently
puts questions and waits for answers. Those questions have
associated timeouts that trigger ProGuide when the students
don’t answer in the time given. In such cases, depending on
the exact situation, ProGuide may:

• Repeat the question;
• Call the student with “Are you there?” or

“Don’t you answer?”
• Ask the student if she/he wants to see the

solution to a similar problem;
• Present the answer and go to the next step.

III. Theoretical Information

Sometimes when we see students trying to solve a problem
we conclude that they don’t know basic programming
aspects. When that happens it may be useful to ask students
to read some information about those aspects (for example,
repetition structures) and see other problems that are solved
using those same aspects. ProGuide includes information and
examples about concepts like variables, input/output,
selections and repetitions. For each of them there are some
texts (figure 3 shows an example about repetitions) and
examples (figure 4). An interesting aspect is that the
examples provided are flowcharts that can also be simulated
in the environment, allowing a better student understanding.

FIGURE 3

HELP ABOUT REPETITIONS

FIGURE 4

EXAMPLES WITH REPETITIONS

PROGUIDE UTILIZATION EXAMPLE

ProGuide includes several typical programming learning
problems, such as “Calculate a rectangle area”, “Determine
the bigger of two numbers” or “Calculate the average of N
values given by the user”. As an example of ProGuide
functioning, we will describe a small example, considering
that a student has to create an algorithm to determine the
bigger of two numbers. This is a very simple problem, often
used to introduce the selection structure.

To solve that problem, the student must follow the
following partial steps:

• Receive the numbers, which implies that she/he
defines two variables to store them;

• Compare the numbers;
• Print the bigger number;

This means that the flowchart must have two input

elements, one selection structure and an output element. As
mentioned before, ProGuide stores information about the
solution characteristics and the dialogues that can be used to
help students reach that solution.

In this case, communication is established with a
question: “Which is the first step to solve the problem?” Of
course, ProGuide expects an answer like “Get the numbers”.

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

If the answer is not the expected one, ProGuide tries to guide
the student to conclude that the first step is to get the
numbers from the user. As example, if the student answers
“Compute de bigger one”, ProGuide answers can be: “Yes!
But to compute de bigger one what do you need to get from
the user?”, or “Yes! But you need to know the values,
right?”.

After the initial dialogue, the student must declare two
variables. If the student takes too long or if she/he inserts an
impossible/incorrect variable name, ProGuide informs
her/him about the error and/or suggests that the student reads
some more information about variables. To conclude this
initial stage, the student must insert in the editor two input
elements, one for each number to be read. ProGuide will not
allow the dialogue to go to a further step before those
elements are inserted correctly.

The following step is to compare the values to determine
the bigger number. So, it will be necessary to insert a
conditional structure in the flowchart. At this stage,
ProGuide expects that the student inserts the necessary
component in the flowchart. If the student fails, or the
timeout is triggered, ProGuide behavior can be: present
examples of algorithms where the selection structure is used
in analogous situations (for example to determine if a student
is approved given his grade), or insert some commentaries,
hints, and question to help the student to think, like:
• “One of the most important parts of programming is

controlling which statement will execute next. As
programmer you can use control structures to determine
the order in which your program statements are
executed, the number of times that statements are
executed, and whether or not statements are executed at
all. Which control structures are needed to do that step
where you must compare two numbers? Selection or
Repetition?”

• “Remember, if the first number is the bigger one the
output will be that number else it will be the other
number. Which control structure you need to use to
solve your problem? Repetition or Selection?”

• “When you need to do some actions based upon a
decision you must insert a selection structure. A
selection controls if some instructions are executed or
not, or which of two groups of instructions are executed.
For example: check if a number is negative before doing
a square root; if true the program finishes else the
program continues. So, go on to solve your problem…
insert the correct structure.”

• “You must compare the values to compute the bigger
one….”

• “If you need to repeat a block of instructions several
times, you need a repetition. If you need to do some
actions based on a decision you must insert a selection.
Insert the correct element in the flowchart….”

Similarly, in other problems, it may be necessary to lead

the student to conclude that she/he needs to use repetition
structures. In that case ProGuide uses hints/questions like:
• “A repetition structure controls how many times a block

of instructions is executed. Do you need this kind of
structure in your problem?”

• “Often you need to execute some instructions while a
condition occurs. You cannot know in advance how
many times you will need to execute the instructions, so
you cannot simply copy them a specific number of
times. But, if you knew how many times the instructions
should be executed, copying them that many times is not
a good idea… Maybe it is better to use a repetition
structure”

• Or, in the context of “average of N values” problem,
“Imagine that the user wants to compute the average of 5
numbers. To read those numbers, how many input
elements should exist in the flowchart?”, “But now,
imagine the user wants to compute the average of 100
numbers. The program would need 100 input
elements...”, “And if we don’t previously know how
many numbers the user wants? If we only know that
during program execution?”

Returning to the bigger of two numbers problem, after

recognizing the need for a selection, the student has to insert
the corresponding element in the flowchart. If the student
inserts some other element (a repetition for example), or the
selection element is introduced in a wrong position,
ProGuide presents a suitable message, highlights the
flowchart, and suggest the correction. A similar situation
happens when the student inserts the correct element, but
gives a wrong selection condition, as shown in figure 5.

FIGURE 5
ERROR IN FLOWCHART

To conclude problem solution, ProGuide simply checks

if the student inserts the output element to print the bigger
number and advices the student to simulate the solution to
check if it works as expected. To facilitate this, ProGuide
provides some input values as test data, so that students do
not test only with some values, but also with values that may
cause errors if the program is not properly created.

CONCLUSIONS

Students must do a lot of practical work to learn
programming. However, many of them find it difficult, loose
motivation and consequently do not develop programming

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

abilities as expected. ProGuide is a dialogue based tool to
support the construction of algorithms to solve some
commonly proposed exercises. Using ProGuide, students
learn and actively develop their problem solving skills,
answering questions, and getting feedback for their actions.
The main idea is to support weaker students that many times
are not able to devise a solution to simple problems.
Algorithm simulation and animation available in ProGuide is
also a factor that may contribute to student motivation and
learning. When they are able to propose a solution, the
environment helps them to analyze it, and detect eventual
errors that exist.

The introduction of new problems in ProGuide is not
simple in the current version. All information to guide
student during the dialogue must be explicitly created as it is
specific to each problem. To reduce this problem we plan to
create a user-friendly tool to help in that work.

ProGuide was not yet evaluated by students, but the
preliminary evaluation done by some programming teachers
was encouraging. We believe that ProGuide can help novice
programming students, especially those with more
difficulties.

REFERENCES

[1] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.
Kolikant, C. Laxer, L. Thomas, I. Utting, and T. Wilusz, , “A multi-
national, multi-institutional study of assessment of programming skills
of first-year CS students”, in Proc. of 6th Annu. Conf. on Innovation
and Technology in Computer Science Education, 2001, pp. 125-180.

[2] J. Carter and T. Jenkins, “Gender and programming: What's going
on?”, in Proc. of 4th Annu. Conf. on Innovation and Technology in
Computer Science Education, 1999, pp. 1-4.

[3] R. Moser, “A fantasy adventure game as a learning environment: why
learning to program is so difficult and what can be done about it”,
ACM SIGCSE Bulletin, vol. 29, nº 3, pp. 114-116, 1997.

[4] N. Pillay, “Developing intelligent programming tutors for novice
programmers”, ACM SIGCSE Bulletin, vol. 35, nº 2, pp. 78-82, 2003.

[5] N. Pillay and V. Jugoo, “An Investigation into Student characteristics
Affecting Novice Programming Performance”, ACM SIGCSE Bulletin,
vol. 37, nº 4, pp.107-110, 2005.

[6] R. E. Mayer, “The Psychology of how novices learn computer
programming”, Computer Surveys, vol. 13,nº 1, pp. 121-141, 1981.

[7] J. C. Spohrer and E. Soloway, “Putting it all together is hard for novice
programmers”, in Proc. of the IEEE Int. Conf. on Systems, Man, and
Cybernetics, 1985, pp. 728-735.

[8] I. Boada, J. Soler, F. Prados, and J. Poch, “A teaching/learning support
tool for introductory programming courses”, in Proc. of 5th Int. Conf.
on Information Technology Based Higher Education and Training,
2004, pp. 604-609.

[9] M. Ben-Ari, “Constructivism in computer science education”, Journal
of Computers in Mathematics & Science Teaching, vol. 20, nº 1,
pp. 45-73, 2001.

[10] R. E. Pattis, Karel the Robot: A Gentle Introduction to the Art of
Programming, 2nd ed., John Wiley & Sons, 1994.

[11] D. Buck and D. J. Stucki, “JKarelRobot: a case study in supporting
levels of cognitive development in the computer science curriculum”,
ACM SIGCSE Bulletin, vol. 33, nº 1, pp. 16-20, 2001.

[12] S. Cooper, W. Dann, and R. Pausch, “Alice: a 3-D tool for
introductory programming concepts”, Journal of Computing in Small
Colleges, vol. 15, nº 5, pp. 107-116, 2000.

[13] C. Kelleher, D. Cosgrove, D. Culyba, C. Forlines, J. Pratt, and R.
Pausch, “Alice2: Programming without Syntax Errors”, User Interface
Software and Technology, 2002.

[14] S. N. Freund and E. S. Roberts, “THETIS: An Ansi C programming
environment designed for introductory use”, ACM SIGCSE Bulletin,
vol. 28, nº 1, pp. 300-304, 1996.

[15] G. Evangelidis, V. Dagdilelis, M. Satratzemi, and V. Efopoulos, “X-
Compiler: Yet Another Integrated Novice Programming
Environment”, in Proc. of 2nd IEEE Int. Conf. on Advanced Learning
Technologies, 2001, pp. 166-169.

[16] R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P.
Steckler, and M. Felleisen, “DrScheme: A programming environment
for Scheme”, Journal of Functional Programming, vol. 12, nº 2, pp.
159–182, 2002.

[17] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg, “The BlueJ
system and its pedagogy”, Journal of Computer Science Education,
vol. 12, nº4, pp. 249-268, 2003.

[18] K. Van Haaster and D. Hagan, “Teaching and learning with BlueJ: an
Evaluation of a Pedagogical Tool”, in Proc. of the Information Science
and Information Technology Education Joint Conf., 2004, pp. 455-
470.

[19] D. J. Jarc and M. B. Feldman, “An empirical study of web-based
algorithm animation courseware in an Ada data structure course”, in
Proc. of Annu. ACM SIGAda Int. Conf. on Ada, 1998, pp. 68-74.

[20] Y. Miyadera, N. Huang, and S. Yokoyama, “A programming language
education system based on program animation”, in Proc. of Education
Uses of Information and Communication Technologies - World
Computer Congress, 2000, pp. 258-261.

[21] A. Gomes and A. J. Mendes, “Suporte à aprendizagem da
programação com o ambiente SICAS”, in Proc. of V Congresso Ibero-
Americano de Informática Educativa, 2000.

[22] C. E. George, “EROSI—Visualizing recursion and discovering new
errors”, in Proc. of 31st SIGCSE Technical Symposium on Computer
Science Education, 2000, pp. 305-309.

[23] S. H. Rodger, “Using hands-on visualizations to teach computer
science from beginning courses to advanced courses”, in Proc. of the
2nd Program Visualization Workshop, 2002, pp. 103-112.

[24] T. L. Naps, “JHAVÉ: Supporting algorithm visualization”, IEEE
Computer Graphics and Applications, vol. 25, nº 5, pp. 49-55, 2005.

[25] R. B. Levy, M. Ben-Ari, and P. A. Uronen, “The Jeliot 2000 program
animation system”, Computers & Education, vol. 40, nº 1, pp. 15-21,
2003.

[26] M. Esteves and A. J. Mendes, “A Simulation Tool to Help Learning of
Object Oriented Programming Basics”,in Proc. of 34th ASEE / IEEE
Frontiers in Education Conf., 2004, pp. F4C7-12.

[27] M. C. Carlisle, T. Wilson, J. Humphries, and S. Hadfield, “RAPTOR:
A Visual Programming Environment for Teaching Algorithmic
Problem Solving”, in Proc. of 36th SIGCSE Technical Symposium on
Computer Science Education, 2005, pp. 176-180.

[28] J. Anderson and B. Reiser, “The LISP Tutor”, Byte, vol. 10, nº 4,
pp. 159-175, 1985.

[29] J. S. Song, S. H. Hahn, K. Y. Tak, and J. H. Kim, “An intelligent
tutoring system for introductory C language course”, Computers &
Education, vol. 28, nº 2, pp.93-102, 1997.

[30] H. A. Ramadhan, F. Deek, and K. Shihab, “Incorporating software
visualization in the design of intelligent diagnosis systems for user
programming”, Artificial Intelligence Review, vol. 16, nº 1, pp. 61-84,
2001.

[31] G. Weber and P. Brusilovsky, “ELM-ART: An adaptive versatile
system for web-based instruction”, Int. Journal of Artificial
Intelligence in Education, vol. 12, pp. 351-384, 2001.

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

[32] E. Hash and J. Zachary, “Automated Feedback on Programs Means
Students Need Less Help From Teachers”, ACM SIGCSE Bulletin,
vol. 33, nº1, pp. 55-59, 2001.

[33] D. Scanlan, “Structured Flowcharts Outperform Pseudocode: An
Experimental Comparison”, IEEE Software, vol. 6, nº 5, pp. 28-36,
1989.

[34] A. Calloni and J. Bagert, “Iconic Programming Proves Effective for
Teaching the First Year Programming Sequence”, in Proc. of 28th
SIGCSE Technical Symposium on Computer Science Education, 1997,
pp. 262-266.

