Learning to Program with ProGuide

Cristiana M. Areias Anténio J. Mendésand Anabela J. Gomies

Abstract - Problem solving and solution planning are
probably the most difficult skills that novice
programming students must acquire. When confronted
with a programming problem many of them fail to create
a solution proposal, even if it is not completely arrect.
When that happens many of them loose motivation and
consequently stop working. In this paper we present
ProGuide, a dialogue based tool to support weaker
students to create basic programs. In ProGuide stuahts
are stimulated and guided through a text-based dialgue.
The tool encourages students providing hints, quasnhs,
similar examples and so on, to help students readte
problem solution. We believe that this tool can hel
novice programming students, especially those thdtave
more difficulties.

Index Terms- Educational technology, Problem solving,
Programming teaching and learning.

INTRODUCTION

Programming courses usually appear in the beginwoihg
computer science and engineering curricula. Thigpbas
because programming skills are required in sevethaér
courses and students are expected to be able goaprnd1].
However, computer science educators know thatainiti
programming courses often present high drop outfaihde
rates. In literature it is also possible to findnypaeferences
to this major educational problem and its causesCArter
and Jenkins say, it is common for student to appraheir
final year project determined to avoid programmatgall
costs, probably because they either cannot progoam
believe that they can not [2]. Learning to progras
recognized to be difficult, since students musteligy good
problem solving skills, learn to express themselves
algorithmic terms and use programming languages dra
often artificial for many of them [3].

It is possible to find in literature several dissioss
about the reasons that contribute to learning aliffies [4,
5]. Student mathematics and science backgrounddgerst
motivation, class sizes and heterogeneous grouptidénts
in class, programming language syntaxes are anf@nmost
cited. We believe that the main difficulty for mastdents is
to compose and coordinate available instructionsreate
the components of a program [6, 7]. Many times estisl
understand basic programming constructs, but aablarto
use them to create coherent programs that soh@Egims.

We believe that learning to program is essentially
learning to solve problems algorithmically and the
programming language should be just a way to ezptles
solution. Programming knowledge cannot be directly
transmitted from teacher to students. On the copntra
students must actively acquire that knowledge [8which
means that practice of programming is a fundamexttivity
for novice students. However, many students findnyna
difficulties in this initial learning phase, and nyaare not
able to create solutions to simple problems. Thisates
conditions for students to lose motivation and gipetrying,
leading to drop out or failure.

As an answer for students learning difficulties, nga
researchers have proposed tools and approacheppors
programming teaching and learning. Micro worldskeli
Karel Robot [10,11] and Alice [12,13], try to inthace basic
programming constructs through a familiar environime
where it is possible to use such constructs to robnt
movements and other behaviors of some familiatye(itke
a robot). Controlled development environments haiso
been proposed, so that students can develop program
skills in environments less complex than professidools.
THETHIS [14], X-Compiler [15], DrScheme [16] and &
[17,18] are examples of such tools. Animation/setioh
educational tools, such as Interactive Data Stractu
Visualization [19], the Programming Education Syste
Based on Program Animation [20], SICAS [21], EROSI
[22], JAWAA [23], JHAVE [24], Jeliot 2000 [25], OGP
Anim [26] and Raptor [27], try to help students letter
understand programs through the utilization of bieg
representations. Another know approach are tokés llisp
Tutor [28], C-Tutor [29], DISCOVER [30], and ELM-AR
[31], that use atrtificial intelligence techniques promote
individualized learning. Some of those tools allstudents
to simulate their own programs, trying to help thenfind
and correct errors and misconceptions. Although,oim
view, this process of error finding and correctsupported
by program simulation tools can be extremely vdeiah
educational terms, weaker students can't take adgerof it,
simply because they aren’t able to create a fiodtition
proposal that may be simulated and improved. Atbe,
majority of those tools emphasize programming laggu
features rather than problem solving skills and aledn
knowledge of a specific programming language, which
weaker students often don’t have. We developed &ides
as an attempt to help those students to create finst
solutions, hopping that after this contributes éwvelop their

! Cristiana M. A. Areias, Department of InformatEsgineering and Systems, Polytechnic Institut€aifnbra and CISUC - Department of Informatics

Engineering, cris@isec.pt

2 Anténio José Mendes, CISUC - Department of Infatios Engineering, University of Coimbra, toze @aept
3 Anabela J. Gomes, Department of Informatics Eeggiimg and Systems, Polytechnic Institute of Coardrd CISUC - Department of Informatics

Engineering, anabela@isec.pt

Coimbra, Portugal

September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

abilities, allowing them to start creating solusoto simple
programming problems.

ProGuide is a dialogue based tool to support weakelr

students to create basic algorithms. It includgsexiously
developed algorithm simulation tool, SICAS [21],daa
dialogue based tool that interacts with studentsindu
algorithm development. The idea is to help studemtgeate
a first solution that can then be improved. In Rum®
students are stimulated and guided through a dialoghe
tool tries to encourage students, providing higisgstions,
and similar examples. This interaction should mstkelents
reflect and step by step construct their solutions.

In next section we will
environment. The third section includes an utilzat
example that may help clarify how the tool workedly,
we present some conclusions and ideas for futurk.wo

PROGUIDE ENVIRONMENT

ProGuide main goal is to help to reduce the diffiea that
weaker programming students show in the initiarriesy
stages. When students start programming they notisely
construct knowledge assisted by guidance from &racand

In the next subsections we will describe ProGuiggnm
features.

The Editor and Simulator

The editor/simulator was inspired in SICAS, a tool
developed previously in our research group. SICAS |s
an educational environment designed to supportetding
of basic concepts of procedural programming. Ieesally
allows the design and animated simulation of atbors
expressed by flowcharts. Like SICAS, ProGuide editod
simulator is a user-friendly iconic space that srfp the
design of algorithms using flowcharts. The optian use

describe the ProGuide flowcharts was taken because we think this reptatien is

more appellative, simpler and probably less pranertors
[33]. Another useful characteristic of flowcharts iheir
programming language independence, which allows
ProGuide utilization in courses that use any pracad
programming language.

As mentioned before, ProGuide aims to help studients
their initial learning stage. The problems proposkd
students at this stage are usually simple and recuily
basic programming constructs. That is why the editay
supports input/output, attribution, repetition asdlection

feedback from others students [9]. Probably the tmosstructures. When the student inserts one of thosstructs

effective way to help those students would be tovigie
human tutoring that could assist each student dyrinblem
solving, giving support in their reasoning and indiage
feedback on the programs they create [32]. Howehés,is
usually not possible, due to the large number odestits in
classes and the limited number of available tearhiaff.

in the flowchart, ProGuide verifies if it is corthc
positioned in the flowchart, if its details are et (for
example the condition in a selection instructioad if it
makes sense to solve the proposed problem. This
verification is very important and is made usinfpimation
given by the teacher during problem specificatidiis

las

To achieve its goal, ProGuide includes an algorithhrmeans that the introduction of new problems in the

editor/simulator and a dialogue based tool tharatts with
students during algorithm development.
internal structures to store information about peots and
its solutions. It uses that information to interadgth the
student when a particular problem is proposednoiter.

environment is complex, as the teacher must givaugim

ProGuide haiformation about the characteristics of the expecolution

(for example, saying it must have a repetition wih
selection inside) and also some input data andesponding
outputs that ProGuide will use to verify if the cémt

ProGuide interface is divided in tree sections assolution works as expected.

presented in Figure 1. The statement of the exemistop
left side, the tutoring and communication on ceteérside
and finally the editor/simulator on the right side.

£ PROGUIDE

Editor / Simulator

1 Tutoring and
1 Communication

acono: [

FIGURE 1
PROGUIDE ENVIRONMENT.

Coimbra, Portugal

FIGURE 2
ALGORITHM SIMULATION.

Whenever the student wants, she/he can simulate the
solution through the flowchart animation. It is pitde to
analyze the algorithm behavior, eventually idemidyerrors
that may have to be corrected. During animatiore th

September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

flowchart element being executed is highlighted dhd
student can see the variable’s current values l@dutitput : -
produced by the algorithm (figure 2). FETRUTURAS DE REPETIEAO - Cletos

Unn ciclo & fundamental em programagio, urma vez que a resolugio de muitas tarefas comuns implica a utilizagio de estrutura repetitivas. Sio
construgBies que permitem executar uma sequencia de instrugdes mais do que uma vez,

| I Tutor' n g an d CO mmun | Catlo n As duas formas mais basicas de ciclas s30 s do tipo ENQUANTO (while) e do tipo PARA (for)

0 cddign num ciclo o tipo PARA & repetido um niimera especifico de vezes, sendo o nimero de repetigBies conhecido antes do ciclo inciar.
Em contraste com esta situagio, o cadign num ciclo o tipo ENQUANTO & repetida infinitas vezes até que alguma situagio especifica &

The communication that ProGuide establishes with th

Stude nts trles to hel p , encou rag e and g u | d e thermgj u Urma forma de repetigio &, normalmente, utilizada quanda o nimero de vezes que o cicla deve ser repetida 6 conhecido antes do inicio da

sua execugin. O mesmo pade ser obtid com um ciclo do tipo Enquanto, mas com ciclo do tipo Para é efectuada de um mado mais compacto,

1 1 1 1 1 0 funcionamento do ciclo PARA depende de trés passos que consistem na inicializagéo, a condicéo de teste e a acgdo, que no & mais da
algorithm design. This is made through hints, exam@an
questions designed to help students thinking ctiyrebout @ o e € st e o it i
the problem and its solution. Questions used arergdy o e oo hvegte e e e e
. . . g « Condigdo: E calculada antes de cada execucén das instrugfies. Se
S|mp|e but they may gu|de Student’s reascn'ng Bm v o seu resultadar for verdadeire, as instrugdes sho executadas, se for
; iy
. o e o solEvohugie na teragdo: € sxecutsda autamaticamant am
problem_ For example, we use questions like: cads ltragha apes 2 Intruges do o, Nommatments soms para

(5 calcular o novo valor da varidvel de controlo (normalmente a acgdo & o
incremento ou decremento da variavel de controlo)

* Which variables are known and unknown in the

problem?
¢ Which information can be obtained from the FIGURE 3

problem description? HELP ABOUT REPETITIONS
* Which data must be received from the user?
* What must be calculated? i EEX|

|
e What must be presented to the user? i

* Which instructions must be inserted in each [fcf croesee = - L
Step’) Programa que calcula a soma de 5 numeros N inisio

nimeros tens de calcular a soma dos ndmeros e
dividir pela quantidate de numeros,

We believe that this kind of guidance can be usgful

atri 14, Sera: (10 +1

solve a particular problem, but also to developbfm 2

solving habits that the students can use in ofhgmtgns. = .
Communication with students is made using a subiset g-f = ‘

Portuguese natu.ra}l Ianguagg. Natu_ral language $EOTRiS || =

complex and difficult, so it possible that studemgive o

enquanto o CONTADOR for menor que 5, 0

unexpected answers. In this case, ProGuide answins
“Sorry, | don’'t understand” or “Sorry, we aren’t ihe same o [-
context”, inviting the student to give an altermatinput. To
reach our objectives it is enough to use a smaketiof the

Portuguese language, and there is no need to Supgpor FIGURE 4

complicatedstatements. EXAMPLES WITH REPETITIONS
When interacting with the student ProGuide freglyent

puts questions and waits for answers. Those qumsstiave PROGUIDE UTILIZATION EXAMPLE

associated timeouts that trigger ProGuide whersthdents
don’t answer in the time given. In such cases, deipg on proGuide includes several typical programming leayn

the exact situation, ProGuide may: problems, such as “Calculate a rectangle area’teibgine
* Repeat the question; the bigger of two numbers” or “Calculate the averag N

* Call the student with “Are you there?” or values given by the user”. As an example of Pro&uid
“Don’t you answer?” functioning, we will describe a small example, ddesing
e Ask the student if she/he wants to see thehat a student has to create an algorithm to déterrhe
solution to a similar problem; bigger of two numbers. This is a very simple prableften

» Present the answer and go to the next step. used to introduce the selection structure.
To solve that problem, the student must follow the
following partial steps:

lll. Theoretical Information « Receive the numbers, which implies that she/he

Sometimes when we see students trying to solveoblgm defines two variables to store them;

we conclude that they don’t know basic programming e Compare the numbers;

aspects. When that happens it may be useful tstaslents » Print the bigger number;

to read some information about those aspects famele,

repetition structures) and see other problemsadhatsolved This means that the flowchart must have two input

using those same aspects. ProGuide includes infmmand elements, one selection structure and an outputeie As
examples about concepts like variables, input/dutpumentioned before, ProGuide stores information alibet
selections and repetitions. For each of them taeeesome solution characteristics and the dialogues thatbeansed to
texts (figure 3 shows an example about repetitics)l help students reach that solution.

examples (figure 4). An interesting aspect is tha¢ In this case, communication is established with a
examples provided are flowcharts that can alsoibelated question: “Which is the first step to solve the lgeom?” Of

in the environment, allowing a better student ustderding. course, ProGuide expects an answer like “Get timebieus”.

Coimbra, Portugal September 3 — 7, 2007
International Conference on Engineering Education 4CEE 2007

If the answer is not the expected one, ProGuiés to guide
the student to conclude that the first step is & the
numbers from the user. As example, if the studesivars
“Compute de bigger one”, ProGuide answers can Yes!
But to compute de bigger one what do you need tdrgm
the user?”, or “Yes! But you need to know the value
right?”.

After the initial dialogue, the student must deel&vo
variables. If the student takes too long or if Bedhserts an
impossible/incorrect variable name, ProGuide inform
her/him about the error and/or suggests that tdest reads
some more information about variables. To concltiie
initial stage, the student must insert in the editeo input
elements, one for each number to be read. ProGuildaot
allow the dialogue to go to a further step befohese
elements are inserted correctly.

The following step is to compare the values to eiee
the bigger number. So, it will be necessary to rinse
conditional structure in the flowchart. At this gta
ProGuide expects that the student inserts the sages
component in the flowchart. If the student failg, the
timeout is triggered, ProGuide behavior can be:sgme
examples of algorithms where the selection strecisiused
in analogous situations (for example to determirgestudent
is approved given his grade), or insert some contanies,
hints, and question to help the student to thiike; |

« “Often you need to execute some instructions while
condition occurs. You cannot know in advance how
many times you will need to execute the instructjso
you cannot simply copy them a specific number of
times. But, if you knew how many times the instioies
should be executed, copying them that many timestis
a good idea... Maybe it is better to use a repetition
structure”

e Or, in the context of “average of N values” problem
“Imagine that the user wants to compute the aveo&ge
numbers. To read those numbers, how many input
elements should exist in the flowchart?”, “But now,
imagine the user wants to compute the average 0f 10
numbers. The program would need 100 input
elements...”, “And if we don’t previously know how
many numbers the user wants? If we only know that
during program execution?”

Returning to the bigger of two numbers problemeraft
recognizing the need for a selection, the studasttb insert
the corresponding element in the flowchart. If #tadent
inserts some other element (a repetition for examplr the
selection element is introduced in a wrong posjtion
ProGuide presents a suitable message, highlights th
flowchart, and suggest the correction. A similauaiion
happens when the student inserts the correct eterbah

* “One of the most important parts of programming isgives a wrong selection condition, as shown inrfigh.

controlling which statement will execute next. As

programmer you can use control structures to déterm

the order in which your program statements arcym
executed, the number of times that statements arfe-

executed, and whether or not statements are exkatite
all. Which control structures are needed to do Htep

where you must compare two numbers? Selection o

Repetition?”
e “Remember, if the first number is the bigger one th
output will be that number else it will be the athe

number. Which control structure you need to use tg

solve your problem? Repetition or Selection?”

e “When you need to do some actions based upon
decision you must insert a selection structure.
selection controls if some instructions are exetuie
not, or which of two groups of instructions are @xed.
For example: check if a number is negative befaiagl

a square root; if true the program finishes else th
program continues. So, go on to solve your problem..

insert the correct structure.”

* “You must compare the values to compute the bigger

one....”

Editor | Simulador | Pseudo €6digo | As minhas notas....

s ORQO

de dados & £7 . Nao te esquegas de seleccionar a opgéo
LER

ProGuide: Elemento de leitura para o 1° nimero inseridol
¥ Falta inserir o elemento para ler 0 2°
ProGuide: Elementn de leitura para 2° i

ALUND:

FIGURE 5
’ ERROR INFLOWCHART

To conclude problem solution, ProGuide simply clseck
if the student inserts the output element to pttiret bigger

« “If you need to repeat a block of instructions save number and advices the student to simulate thetigolto
times, you need a repetition. If you need to do esomcheck if it works as expected. To facilitate tHRroGuide
actions based on a decision you must insert at&®lec provides some input values as test data, so theests do
Insert the correct element in the flowchart....” not test only with some values, but also with valtieat may

cause errors if the program is not properly created
Similarly, in other problems, it may be necessarietd

the student to conclude that she/he needs to ymditien

structures. In that case ProGuide uses hints/aqunsslike:

* “Arepetition structure controls how many timesladk
of instructions is executed. Do you need this kafd
structure in your problem?”

CONCLUSIONS

Students must do a lot of practical work to learn
programming. However, many of them find it difficubose
motivation and consequently do not develop programgm

Coimbra, Portugal September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

abilities as expected. ProGuide is a dialogue basedto

support the construction of algorithms to solve som
commonly proposed exercises. Using ProGuide, staden

learn and actively develop their problem solvinglisk
answering questions, and getting feedback for thefions.
The main idea is to support weaker students thatyrtimnes
are not able to devise a solution to simple problem [1°]
Algorithm simulation and animation available in Brade is
also a factor that may contribute to student mditvaand
learning. When they are able to propose a solutibs,
environment helps them to analyze it, and deteenial
errors that exist.

The introduction of new problems in ProGuide is not

simple in the current version. All information tauide
student during the dialogue must be explicitly tedaas it is
specific to each problem. To reduce this problemplaa to
create a user-friendly tool to help in that work.

ProGuide was not yet evaluated by students, but the
preliminary evaluation done by some programmingheas
was encouraging. We believe that ProGuide can haljice

programming students, especially
difficulties.
REFERENCES
[1] M. McCracken, V. Aimstrum, D. Diaz, M. Guzdial, Blagan, Y. B.

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

Kolikant, C. Laxer, L. Thomas, I. Utting, and T. M&z, , “A multi-
national, multi-institutional study of assessmeinpmgramming skills
of first-year CS students”, iRroc. of 6th Annu. Conf. on Innovation
and Technology in Computer Science Educa@®®1, pp. 125-180.

J. Carter and T. Jenkins, “Gender and programmiigat's going
on?”, in Proc. of 4th Annu. Conf. on Innovation and Techgglin
Computer Science Educatiat999, pp. 1-4.

R. Moser, “A fantasy adventure game as a learningrenment: why
learning to program is so difficult and what can dmne about it”",
ACM SIGCSE Bulletinvol. 29, n° 3, pp. 114-116, 1997.

N. Pillay, “Developing intelligent programming tugo for novice
programmers”ACM SIGCSE Bulletinvol. 35, n° 2, pp. 78-82, 2003.

N. Pillay and V. Jugoo, “An Investigation into Sard characteristics
Affecting Novice Programming Performanc&CM SIGCSE Bulletin
vol. 37, n° 4, pp.107-110, 2005.

R. E. Mayer, “The Psychology of how novices learomputer
programming” Computer Surveysol. 13,n° 1, pp. 121-141, 1981.

J. C. Spohrer and E. Soloway, “Putting it all tdggetis hard for novice

(23]

[14]

[16]

(17]

(18]

those with mordl9l

(20]

(21]

(22]

(23]

[24]

[25]

(26]

programmers”, irProc. of the IEEE Int. Conf. on Systems, Man, and [27]

Cybernetics1985, pp. 728-735.

I. Boada, J. Soler, F. Prados, and J. Poch, “Ahiegflearning support
tool for introductory programming courses”, Bmoc. of 5th Int. Conf.
on Information Technology Based Higher Educatiord amraining
2004, pp. 604-609.

M. Ben-Ari, “Constructivism in computer science edtion”, Journal
of Computers in Mathematics & Science Teachiwg, 20, n°® 1,
pp. 45-73, 2001.

R. E. Pattis,Karel the Robot: A Gentle Introduction to the At o
Programming 2nd ed., John Wiley & Sons, 1994.

D. Buck and D. J. Stucki, “JKarelRobot: a case wtird supporting
levels of cognitive development in the computeesce curriculum”,
ACM SIGCSE Bulletinvol. 33, n° 1, pp. 16-20, 2001.

S. Cooper, W. Dann, and R. Pausch, “Alice: a 3-DI téor
introductory programming conceptsfpurnal of Computing in Small
Collegesvol. 15, n° 5, pp. 107-116, 2000.

Coimbra, Portugal

(28]

[29]

(30]

(31]

C. Kelleher, D. Cosgrove, D. Culyba, C. Forlines,Pdatt, and R.
Pausch, “Alice2: Programming without Syntax Errotdser Interface
Software and Technolog2002.

S. N. Freund and E. S. Roberts, “THETIS: An Ansp@gramming
environment designed for introductory us&CM SIGCSE Bulletin
vol. 28, n° 1, pp. 300-304, 1996.

G. Evangelidis, V. Dagdilelis, M. Satratzemi, and Bfopoulos, “X-
Compiler: Yet Another Integrated Novice Programming
Environment”, inProc. of 2nd IEEE Int. Conf. on Advanced Learning
Technologies2001, pp. 166-169.

R. B. Findler, J. Clements, C. Flanagan, M. FattKrishnamurthi, P.
Steckler, and M. Felleisen, “DrScheme: A programgnémvironment
for Scheme”Journal of Functional Programmingjol. 12, n° 2, pp.
159-182, 2002.

M. Kolling, B. Quig, A. Patterson, and J. Rosenbefbhe BlueJ
system and its pedagogyJpurnal of Computer Science Education
vol. 12, n°4, pp. 249-268, 2003.

K. Van Haaster and D. Hagan, “Teaching and learmiitlg BlueJ: an
Evaluation of a Pedagogical Tool”, Broc. of the Information Science
and Information Technology Education Joint Cpr#004, pp. 455-
470.

D. J. Jarc and M. B. Feldman, “An empirical studyweb-based
algorithm animation courseware in an Ada data sireccourse”, in
Proc. of Annu. ACM SIGAda Int. Conf. on AdQ98, pp. 68-74.

Y. Miyadera, N. Huang, and S. Yokoyama, “A programgrianguage
education system based on program animatiorPrat. of Education
Uses of Information and Communication TechnologiesVorld
Computer Congres2000, pp. 258-261.

A. Gomes and A. J. Mendes, “Suporte a aprendizagiam
programagao com o ambiente SICAS”PFroc. of V Congresso Ibero-
Americano de Informéatica Educativ2000.

C. E. George, “EROSI—Visualizing recursion and dising new
errors”, inProc. of 31st SIGCSE Technical Symposium on Compute
Science Educatiqr200Q pp. 305-309.

S. H. Rodger, “Using hands-on visualizations tocteaomputer
science from beginning courses to advanced coyrge®toc. of the
2nd Program Visualization Workshop002, pp. 103-112.

T. L. Naps, “JHAVE: Supporting algorithm visualizat”, IEEE
Computer Graphics and Applicatignsol. 25, n® 5, pp. 49-55, 2005.

R. B. Levy, M. Ben-Ari, and P. A. Uronen, “The &I12000 program
animation system”Computers& Education vol. 40, n° 1, pp. 15-21,
2003.

M. Esteves and A. J. Mendes, “A Simulation TooHtlp Learning of
Object Oriented Programming Basics”fmoc. of 34th ASEE / IEEE
Frontiers in Education Conf2004, pp. FAC7-12.

M. C. Carlisle, T. Wilson, J. Humphries, and Sdfield, “RAPTOR:

A Visual Programming Environment for Teaching Algiomic
Problem Solving”, inProc. of 36th SIGCSE Technical Symposium on
Computer Science Educatid?005, pp. 176-180.

J. Anderson and B. Reiser, “The LISP TutoByte vol. 10, n° 4,
pp. 159-175, 1985.

J. S. Song, S. H. Hahn, K. Y. Tak, and J. H. KirAn “intelligent
tutoring system for introductory C language coursedmputers&
Educationyol. 28, n° 2, pp.93-102, 1997.

H. A. Ramadhan, F. Deek, and K. Shihab, “Incorpogasoftware

visualization in the design of intelligent diagrosiystems for user
programming” Artificial Intelligence Reviewyol. 16, n° 1, pp. 61-84,
2001.

G. Weber and P. Brusilovsky, “ELM-ART: An adaptiwersatile
system for web-based instruction”nt. Journal of Artificial
Intelligence in Educatiorvol. 12, pp. 351-384, 2001.

September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

[32] E. Hash and J. Zachary, “Automated Feedback onr&mgy Means
Students Need Less Help From TeacheCM SIGCSE Bulletin
vol. 33, n°1, pp. 55-59, 2001.

[33] D. Scanlan, “Structured Flowcharts Outperform Pseode: An
Experimental ComparisonlEEE Software vol. 6, n° 5, pp. 28-36,
1989.

[34] A. Calloni and J. Bagert, “Iconic Programming PoJeffective for
Teaching the First Year Programming Sequence™Piiac. of 28th
SIGCSE Technical Symposium on Computer Scienceatiaiycl997
pp. 262-266.

Coimbra, Portugal September 3 — 7, 2007
International Conference on Engineering Education 4CEE 2007

