Teaching Software Architecture Quality based on
run-time metrics

Renato Manzan de AndradeReginaldo Arakaki

Abstract- Software architecture is strongly related totays
quality, since it drives the whole development gss In
large systems, the achievement of qualities such
functionality, efficiency, reliability, and maintzbility
depends more on the overall software architectoam on
code-level practices. It is cost effective to toydetermine,
before a system is built, whether it will satistg desired
qualities. By these reasons, evaluating softwataitecture
quality has become one of the most important dessin
the software development cycle. To support thisisien,
many software architecture evaluation methods dighinct
goals and approaches have emerged in the last éansy

system. The obvious risk is that potentially laegeounts of
resources will have been put into building a systehich
aoes not fulfill its quality requirements [3]. Fiinis reason, it
is important to evaluate and determine whethersdesy is
destined to satisfy its desired qualities or nofole it is
built[4].

Besides the Introduction, the paper is structured a
follows. The next section provides background and
motivation for this work. The third section presersome
concepts about software metrics and its relationsoftware
architecture quality. An approach based on a fraonkwo
teach software architecture quality created byathhors is

These methods can assist the developer in creaing presented in the fourth section.

software architecture that will have a potentiafudill the

requirements on the system. Although software techire
is part of Software Engineering undergraduate culuim, in
many cases software architecture quality classesnato
explicit clearly the importance of this issue. &nts have
strong programming skills, but
architectural quality concepts and their influences
software quality, costs and maintenance.
describes a practical approach to teach softwanstacture
quality based on

An example of application of the framework in an
advanced software laboratory undergraduate disepls
presented in the fifth section, emphasizing norcfiomal
requirements, its metrics and the framework adtisitto
teach software architecture quality. A summary aasion is

very seldom knowprovided in the sixth section and the referenceslus this

papers are listed in the last section.

This paper

SOFTWARE ARCHITECTURE QUALITY

run-time metrics and presents the

application of this approach in an advanced softwarDesigning software architecture is a complex prseces

laboratory undergraduate discipline.

Index Terms Software Architecture, Software Quality, Run
time metrics, Software Engineering Education.

INTRODUCTION

Software-intensive systems play an increasingly artgmt
and central role in all aspects of everyday lifedmeing a
critical factor to the successful operation of epss,
including not only life-critical control systems,utb also
ordinary communication and commerce [1].

In software-intensive systems, the achievement
qualities - such as performance, availability, siguand
modifiability - is dependent on the software arebitre. In
addition, quality attributes of large systems can Highly
limited by a system’s requirements and constrdftjts

Software quality can be defined dafined as the degree
to which a customer or user perceives that softwagetsrhis or
her composite expectations [3].

Furthermore, it is always more cost-effective talaate
software quality as early as possible in the ljele of the

involving the creation of solutions to complex, tiféceted
problems, which often do not have a single optistdilition,

- but only a number of acceptable ones. One partigula

difficult aspect of the architectural process iswing that a
system will meet its quality requirements [1]. Téeare
several reasons that explain the complexity of eghg
quality attributes through software architectureluding a
lack of specificity in the requirements, a shortagé
documented knowledge of how to design for particula
quality attributes, and the trade-offs involveddohieving
quality attributes [2].

While getting a system’s functionality correct is
ofmportant, many systems are considered to be &slur
because they are lacking in one or more criticah-no
functional qualities, such as security or scalgbili

Understanding the relationship between architettura
decisions and a system’s quality attributes rewvkatdtware
architecture validation as a useful risk-reducstrategy [3].

The idea of predicting the quality of a softwareduct
from a higher-level design description is not a rave. In
1972, Parnas described the use of modularizatiod an
information hiding as a means of high level system

! Renato Manzan de Andrade, Computing EngineeridgRigital Systems Department - Polytechnic Sclodohe University of S&o Paulo - S&o Paulo —

SP, 05508-900, Brazil, renato.manzan@poli.usp.br

2 Reginaldo Arakaki, Computing Engineering and RigBystems Department - Polytechnic School olthiversity of Sdo Paulo - S&o Paulo — SP, 05508-

900, Brazil, reginaldo.arakaki@poli.usp.br

Coimbra, Portugal

September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

decomposition to improve flexibility and comprehibilgty.

In 1974, Stevens et al. introduced the notions ofdute
coupling and cohesion to evaluate alternativespfagram
decomposition. During recent years, the notion affveare
architecture has emerged as the appropriate leveldaling
with software quality.[5].

Quality permeates all aspects of software developme

from the initial requirements gathering process tte
operation of the executable system. The qualitg ejstem
is directly related to the ability of the systemdatisfy its
functional, nonfunctional, implied, and
requirements [6] A system has many characteristich as
functionality, performance, and maintainability. erquality
of each of these characteristics comprises thé qotglity of
the system. Each characteristic can be specifiedaras
attribute of the system [7].

The view of quality can be internal or externaldah
also affected by the stakeholder view in the paldicstage
of development.

The quality characteristics of the ISO 9126 quality
model are refined into attributes, which can be snesd to
enrich the information about the architecture. [9].

ISO-9126 lists 6 quality characteristics: functilitya
reliability, usability, efficiency, maintainability and
portability. These characteristics are refined in®
subcharacteristics: efficiency, maintainability, riadility,

specified reliability, security, integrability, scalabilityna usability.

SOFTWARE METRICS

The achievement of quality attributes of a systesn i
intimately connected with the software architectfoe that

Quality attributes can be represented using qualitgystem [10].

models. Quality models are systems that relateouari
quality attributes and, in some cases,
engineering practices to address
appropriate for measuring or observing them. Eacueh
uses different terminology, but they share geneosicepts
as internal quality attributes and external quadityributes
usability, efficiency), The quality metamodel cam lsed as
a basis for describing various quality models. Higure 1
shows a quality metamodel.

Observable

Via Execution
External Characteristic
Not Observable 1

Via Execution

1..* | manifestation of

Internal Quality Attribute

addresses

name
value

Engineering Practice
*
) AN

measure

T

Metric

Architecting Practice

scale
method

Scenario

FIGURE 1 - QUALITY METAMODEL [7]

A quality model is a specific instance of the qyali
metamodel and defines specific characteristics, litgyua
attributes, and metrics. In this paper, the ISOeit3tance
of the quality metamodel is used.

The desired combination of attributes quality shml

identify keylearly defined; otherwise, assessment of quatityeft to
them and metrigatuition.

Quality attributes form the basis for architectural
evaluation, but simply naming the attributes byntkelves is
not a sufficient basis on which to judge an ardhitee for
suitability. Often, requirements statements like thllowing
are written [11]:

e "The system shall be robust."

e "The system shall be secure from unauthorized break
in."

« "The system shall exhibit acceptable performance."

Without elaboration, each of these statementshgest
to interpretation and misunderstanding becausectimeept
of quality is a subjective term. The use of sofsvamnetrics
can help to decrease the abstractness of softwaebtyq
statements [11].

Defining software quality for a system is equivalém
defining a list of software quality attributes régal for that
system and identify a set of software metrics.

The purpose of software metrics is to make assegsme
throughout the software life cycle as to whether sbftware
quality requirements are being met. The use ofwsot
metrics reduces subijectivity in the assessmentcanttol of
software quality by providing a quantitative basis making
decisions about software quality. However, the ude
software metrics does not eliminate the need fomdm
judgment in software evaluations.

The use of software metrics within an organization
project is expected to have a beneficial effectnigking
software quality more visible [6].

More specifically, the use of software metrics for

IS0 9126 §] proposes a general quality model, based ifneasuring quality allows an organization to:

McCall's model, to specify and evaluate the quatitya
software product from different perspectives or wsde
acquisition, development, maintenance. It considesnal
quality characteristics, which are related to tlodtveare

development process and environment or context and

external characteristics, which are observed byeti:user
on the final software product.

Coimbra, Portugal

e Achieve quality goals;

- Establish quality requirements for a system aputiset;

- Establish acceptance criteria and standards;

e Evaluate the level of quality achieved against the

established requirements;

« Detect anomalies or point to potential problemghia
system;

« Predict the level of quality that will be achievedthe
future;

September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

¢ Monitor changes in quality when software is modifie
« Assess the ease of change to the system duringigirod

evolution; .
* Validate a metric set.

Software metrics is slowly becoming an integralt pudr
software development and are used during everyepbiathe »
software development life cycle. Research in theaaof
software metrics tends to focus predominantly oaticst
metrics that are obtained by static analysis of sbftware .
artifact.

Estimating software quality attributes based onadyic .
metrics for the software system are more accuratg a
realistic [12].

taxonomy
comprehension, application, analysis, synthesiuation).

TEACHING SOFTWARE ARCHITECTURE QUALITY BASED
ON RUN-TIME METRICS

Acquire an architectural level mental model congiug
quality attributes;

Recognize the importance of an architecture-centric
approach;

Create a software metrics plan to improve system
quality;

Generate reasonable architectural alternatives aor
problem and choose among them, based on functional
and non-functional requirements;

Construct proof of concepts to evaluate, improve or
reject the software architecture of a system;

Obtain real-world experience in software enginegrin

The educational framework is based on the Bloom
of educational objectives (knowledge,

Bloom's Taxonomy was first designed as a guide for

measuring learning objectives in a specific fieldlomain.

Software metrics are acknowledged by both software

However, it is to provide a fine-grained model for

engineering researchers and educators as beingrealt g evaluating students’ knowledge of software archites

importance in improving the software developmemtcpss.
Unfortunately, the current practice in industrytaslargely
ignore metrics and work at an instinctive level.

software analyses, design and construction, butndb
address the complexity of a real-world.
architecture classes the students normally buittdaployed
many systems, but the patterns of success andeaihe not
studied. .

In the same way, explored theoretical frameworks fo
describing software architectures and processhsild them
are taught, but almost no effort to evaluate tharnthe real
world is done.

In general, software architecture classes are ptedeén
a very theoretical and abstract way, but the stisddbave
weak intuitions about high-level architectural ahastions
and quality attributes. .

Students have strong programming skills, but very
seldom know architectural concepts and their infbgs on
software quality, productivity, costs, and maintece These
students tend to immediately start coding once tkegive a
problem to be solvedLf]. These results in a serious gap in
software engineering curriculum: students are ebgokco
learn how to design complex systems without theuisitg
intellectual tool for doing so effectively [14].

An alternative to improve industry practice seem$é¢
to educate current software engineering students in
accepting metrics as a normal part of the software
engineering process [15].

To teach to undergraduates software engineering
students the importance of software metrics to eaehi
software quality, a framework for software architee
quality education created by the authors was usép [

The main purpose of this framework is to help téagh
students how to develop software systems from an
architectural point of view, considering qualitytrdtutes
issues and using software metrics to evaluate them.

The framework goals were defined in terms of what
students should be able to do after successfuliyguthe
framework:

Coimbra, Portugal

quality based on run-time metrics. In this contdke
software metrics can be viewed as a body of knogde@@r

domain) that the student employs when performirfgnsoe
Current software engineering curriculums emphasizearchitecture development

and evolution tasks. This

taxonomy provides a framework within which studénts
In softwareknowledge of this domain can be assess&d [

The framework for software architecture quality

education has the following characteristics:

Practical approach: usually software architecture
quality and its metrics are presented in a verpritical
and abstract way, but the students have weak ionait
about high-level architectural abstractions andlityua
attributes. Real world examples of software arclitees
metrics, collected from practical examples, leadato
better understanding of its concepts and qualiger
offs.
Problem-based learning: engineering education is
undergoing significant changes, notably in the way
engineering schools are adopting problem-based
instruction to meet the changing demands of enginge
practice. Mastery of technical content is no longer
sufficient. Increasingly, engineering programs are
requiring students to work projects that are opeced
with loosely specified requirements, produce
professional quality reports and presentations sicken
ethics and the impact of their field on societydan
develop lifelong learning practices. An implicit ajoof
this shift in curricula is to produce graduates wiith be
ready to assume engineering tasks upon graduation—
that is, with the skills to develop solutions tmipiems
under competing constraints of functionality, cost,
reliability, maintainability, and safety [18]. Inrgblem-
based learning, students are actively involved with
problems coming from real practice. The framework
uses the following steps to applies the problenethas
learning to teach software architecture quality]{19

1. Identify concepts and parts of the problem that

needs clarification

2. Define the problem

September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

3. Analyze the problem and brainstorm aboute

solutions

4. Structure solutions

5. State learning objectives

6. Study directed towards learning objectives

7. Report things learned and application to the

problem
The students do not realize the importance of non-
functional requirements and its influences on safew
architecture quality. This is caused by the stusidatk
of experience in working with non-functional .
requirements. Due the lack of experience or even
comprehension, non-functional requirements areamot
interesting topic to the students. The framewor&sua
problem-based learning to teach software architectu
quality in a more attractive way.
Non-functional requirements metrics: Non-functional
requirements impact directly on measures such as
productivity and cost. Ultimately, it is these qtitative
measures that determine the justification for itwest
in a software development project. In view of tia@ality
it is surprising that non-functional requirementse a
often ignored in the analysis process [20].
Simulation techniques: Simulation has been used in
engineering disciplines for many years to great
advantage. In recent years, an increasing amount of
attention has been paid to using simulation to adea
software engineering. There are some areas in which
simulation can benefit software engineering, ingigd
assessing the costs of software development, stipgor
metric collection, requirements and project
management, training, process improvement, risk and

Incremental learning: knowledge is often hierarchical,
and frequently the best way to assure performamce o
higher-level objectives is to identify the preresiig
skills needed for a current unit of instruction and
ascertain that students have mastered them. Based o
this premise and considering the richness, the
complexity and the multiple dimensions of software
architectures quality concepts, the framework uases
incremental approach, so the topics are presentech i
increasing abstraction level.

Learner-based teaching:traditional education practice
seems to be built on an assumption that the mira is
container, and it is the teachers’ responsibilityilt this
with knowledge. Learner-based teaching means that
education is not viewed as a process where knowleslg
transferred from the teacher to the student, btitera
that knowledge is create within the students’ mifidse
framework adopt a practice driven education model
where software architecture quality concept is réga

as something which cannot be taught entirely, bustm
be built by each individual requiring a engaged and
proactive attitude on the part of students. Thisragch,
which goes from the concrete to the abstract, abst

on the innate human desire to explore and learisha
characterized by “practice-pull”, rather than “thgo
push” [24].

Team work: the Capability Maturity Model (CMM)
states that, as organizations reach higher levéls o
maturity, individual activities become team actast
[25].

In the framework for software architecture quality

produce visualizations of the architecture’s exiecut
[22]. These visualizations are particularly usefat
identifying software architecture failures as bertcks
points, resources starvation, memory leaks,
performance, etc. Simulation, done during

must be collect is based on architecture assessréig
technique encompass a set is the activity of meaglor
analyzing a system's architecture in order to wstdad its
lowAluality attributes.
thearchitecture design is improve the potential quatif the

The main goal of assessment of

architecture and design stage, is also a low costystem before itis implemented.

alternative to the actual implementation and exeoutf
a real system.

Architecture assessment also facilitates the agidic

of design methods and provides the tools to compasign

Intensive use of proof of conceptsproof of concept is variations and eliminate them, thus reducing théeipial

used as evidence that the chosen software arahieist

viable and capable of meeting quality attributes
requirements.
Real-world real-world

projects: incorporating

solution field.

In order to make non-functional quality attributes

measurable or observable, they must be reifiedoasrete
tasks or scenarios. A technique developed at Sodtwa

problems of sufficient magnitude and complexityoint Engineering Institute (SEI) is to convert qualitftripute

the framework is necessary to enable effectivenlagr
of software architecture quality skills and consgpo
the framework attempts to model the "real-world" as®
closely as possible.

Project-based classessome courses should be set up to
mimic typical projects in industry. These shouldlige
group-work, presentations, formal reviews, quality
assurance, etc. It can be beneficial if such aseourere

to include a real-world customer or customers. &ttsl
should also be able to experience the differengésrol
typical in a software engineering team: project augr,
tools engineer, requirements engineer, 8. [

Coimbra, Portugal

requirements into concrete scenarios for userseldpers,
and maintainers.

Scenarios can be a very powerful

pecification technique because they make seemiragiye
or abstract requirements into tangible concretiestas

Scenarios can be realized through the creation of a

quality attribute utility tree, which is one of theain steps of
SEl's Attribute Trade-off Analysis Method (ATAM) 62
An example utility tree is represented in Figure 2.

September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

(M,L) Minimize storage latency
on customer DB to 200 ms.
Data Latency
_Pi?ffO”“a”CE{] H.M) Deliver video in real time
Transaction
Throughput
New product (LH))
. M} Add CORBA middleware
— Modifiability categories in < 20 person-months
LTS (H-L)Change web user interface
in < 4 person weeks
Utility 1 (L.H)Power outage at Site 1 requires
traffic re-direct to Site 2 in < 3 secs
H/W failure (M, M)
| Availability Restart after disk failure in < 5 mins
CQTS S (H.M) Network failure is detected and
failures recovered in < 1.5 mins
(L,H) . ‘
Data Credit card transactions are
L security | confidentiality secure 99.999% of time
Data (L:H}customer database authorization
integrity works 99.999% of time

FIGURE 2 — QUALITY UTILITY TREE [11]

The utility tree is used
into concrete scenarios
architectural design.

to translate abstract ireguents
used

APPLYING THE FRAMEWORK

The framework for software architecture quality eation

has been used to teach undergraduate students of

to analyze a syste

Vital Signs

Home > Vital Sings > Log CPU & Memorla
Dados Vitais do Sistema - Atual

Vocé estd aqui >

Home VitalSigns
Home Administrador
Dados de Infraestrutura
CPU & Memoria

Banco de Dados
Concorrencia

cPU 85 %
320 MB
Tamanho do log 20

Memaria

Média.da ultima hora e Histdrico

Dados de Hegocio CPU Utilizada %
Historico de Acessos

Cadastros Novos

Memoria no Servidor _—

T
Wemara L .
A

@ Memoria Ocupada ® Memoria Livie

Sobre o site Talentos - Especificagbes deste Site - Ajuda

FIGURE 3 — COMPUTER RESOURCE MONITORING PAGE

The construction and use of these mechanisms aye ve
important to improve the students understandingodifivare

ms

architecture quality and non-functional requiremsersing
simulation techniques and proof of concepts is iptsdo
explore many failure situations from real world teyss as
bottlenecks, resources starvation, low databaderp@ance,
shared data synchronization. The results of sinmratare
Iglgged and analyzed by monitoring tools [27].

advanced software engineering laboratory disciplineat
Computing Engineering and Digital Systems Departnoén
Polytechnic School of the University of S&o Paulo.

In order to create a learning scenario, the praghould
not start from scratch but, as in most industriaijgcts, the
project should start with an existing system the¢ds to be
extended, modified or measured. A short, imprecise
requirements description and the legacy applicaiengiven
to students.

After challenging the students with of a real world
project assignment, the primary strategy was tolires and
motivate them in a full life cycle team project, avh the
teacher plays the role of “the client”. This gitbe students
first hand personal experience in the effects ofkinm
architectural decisions on their project and on ¢hents’
satisfaction with their product.

The concepts of non-functional requirements and
software metrics were presented to the students.

Considering non-functional requirements concepts, a
evaluation of the legacy system is done. Possibialitg
improvements are identified and some non-functional
requirements, mainly those that can be measuredrijime
metrics, were chosen.

From the chosen non-functional requirements,
ATAM quality attribute utility tree and scenariosere
defined to guide the software quality evaluatiod aretrics.

In order to leverage the pedagogical content of the
classes some mechanisms as simulators, proof aepts)
dependency injection and monitoring tools weredby the
students. A computer resource monitoring page ésvehin
Figure 3:

an

Coimbra, Portugal

When the students were introduced to these situstio

they rapidly realized how important the non-funotib
requirements are for the overall software architectuality.

The collected metrics were evaluated based ontility u

quality tree and for the ones under an acceptab#dity
level, some actions to improve the software archite were
implemented.

The process is repeated until the metric valuehesc

the desired quality level. The framework activitiese
represented in an UML activity diagram, shown igufe 4:

Evaluate legacy system

Identify possible non-functional
requirement improvements

Define software metrics based on
ATAM quality attribute utility tree and scenarios
Define mechanisms to collect
software metrics
Collect software metrics

{ Evaluate collected metrics |

[non acceptable
quality level |

Redesign software
architecture
components to improve
quality level

[acceptable
quality level]

FIGURE 4 - FRAMEWORK ACTIVITIES

September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

practical

The (re)design and metrics evaluated were presdmyted [12] Gunnalan, R., Shereshevsky, M. and Ammar, Hsetilo dynamic
each group, so the major architectural decision®whared
by all students

In the classes, the students were able to analyze |

way the non-functional

architectural point of view and its importance teeting

software quality. Under this learning scenarioheos 14
essential software engineering skills were alsinéih as
team work, software project management, softwardls]
architecture design and communication skills, irealistic
environment and in architectural-centric approach. [16]
The evaluation of the application of framework was
done by a learning questionnaire answered by tingents.
Analyzing the students’ answers, the metrics vahmas the [17]
quality attributes of the resulting system (aftee tycles of
architectural redesign), there are evidences tletbncepts
taught by the discipline were learned. (18]
CONCLUSIONS [19]

This framework is been developed by the authorses003
and has already been applied in 20 class groupt) wi [20]
approximately 18 students per class, resultingonrd 5550

class hours,

including

disciplines and mentoring on the job activitiese ®tudents’
feedback on the use of framework has been veryipesi

The authors believe strongly that including praatic

software metrics formally in software engineeringricula
in order to obtain software quality from an arctiteal point
of view can help the universities to achieve tlogire goals
in higher education, supplying the growing demarfd
society for high skilled system architects.

(1]

(2]

(3]

(4]

(9]

(10]

(11]

REFERENCES

Woods, E. and Rozanski, N., “Using Architecturalrdpectives”,
Proceedings of the 5th Working IEEE/IFIP Conferemece Software
Architecture(WICSA'05), Vol. 00, 2005, pp. 25-35.

Bachmann, F., Bass, L., Klein, M. and Shelton, @esigning
software architectures to achieve quality attribueguirements”,
Software, IEE Proceedinyol. 152, No 4, 2005, pp. 153- 165.
Bazzana, G., Andersen, O., Jokela, T., “ISO 9126 KO 9000:
friends or foes?”Software Engineering Standards Symposilé93,
pp. 79 — 88.

Kazman, R., Bass, L., Abowd, G., Webb, M., “SAAM:Method for
Analyzing the Properties of Software ArchitectuteBroceedings of
the 16th International Conference on Software Eegimg (ICSE
94), 1994, pp. 81-90.

Dobrica L.; Niemela E., “Survey on Software Archkiigre Analysis
Methods”. IEEE Transactions on Software Engineeringl. 28, No.
7, 2002, pp. 638-653.

IEEE, “IEEE Standard for a Software Quality Metrigthodology”,
IEEE Std 1061-1998Revision of IEEE Std 1061-1992), 1998.

Albin, S., The Art of Software Architecture: Design Methodsl an

Techniqueswiley, 2001.

ISO/IEC 9126 International Standard. Informatiorchieology -

Software product evaluation - Quality charactersstand guidelines

for their use, 1991.
Losavio, F., Chirinos, L. and Perez, M.A., “Qualityodels to design

[13]

requirements by an

undergraduate and graduated

(21]

(22]

0123]

[24]
(25]

(26]

(27]

software architectures"Technology of Object-Oriented Languages

and Systems, 2001. TOOLS 38. Proceedi®@@1, pp. 123-135.
Pinna, C., “Um roteiro centrado em Arquitetura patiaimizagcdo de
riscos e incertezas em projetos de software”, Mh®sis, Escola
Politécnica da Universidade de Sédo Paulo, Sdo PRrdail, 2004.
Clements, P., Kazman, R. and Klein, MEyaluating Software
Architectures: Methods and Case Studiefddison-Wesley
Professional, 2002.

Coimbra, Portugal

metrics”, Conference on Computer Systems and Applicatip@85,
pp. 117-vii.

Rosca, D.; Tepfenhart, W.; Mcdonald, J., “Softw&egineering
Education: Following a Moving Target'Proceedings of the 16th
Conference on Software Engineering Education andinirg
(CSEET'03) 2003, pp. 129-139.

Shaw, M., “Software engineering education: a rogaimaternational
Conference on Software Engineering - Proceedingh®ftonference
on The future of Software engineeri2§00, pp. 371-380.

Thomas, R, “A practical experiment in teaching wafe engineering
metrics”, Software Engineering: Education and Practice, 1996.
Proceedings. International Conferend®96, pp. 226-232.

Andrade, R., “Um framework para o ensino de artuite de
software”, M.S. thesis, Escola Politécnica da Ursidade de Sao
Paulo, S&o Paulo, Brazil, 2005.

Buckley, J. and Exton, C., “Blooms’ Taxonomy: A frework for
Assessing Programmers’ Knowledge of Software Systebith IEEE
International Workshop on Program Comprehension RGAD3)
2003, pp. 165-174.

Chung, G., Harmon, T.C. and Baker, E.L., “The ictpaf a
simulation-based learning design project on studarning”, IEEE
Transactions on Education, Volume: 44, No. 4, 2@@1 390-398.
Koper, R., “Modeling Units of Study from a PedagmadiPerspective:
the pedagogical meta-model behind EML". Open Ursieit
Nederland, 2001.

Pasternak, T., “Using trade-off analysis to uncolirks between
functional and non-functional requirements in uasec analysis”,
IEEE International Conference on Science, Technolognd
Engineering 2003, pp.3- 9.

Collofello, J.S., University/industry collaboratiom developing a
simulation based software project management ftrgincourse,
Proceedings. 13th Conference on Software Engingdfiucation &
Training, 2000, pp. 161- 168.

Barber, K.S. and Holt, J. Software architectureraminess,|EEE
Software Vol. 18, No. 6, 2001, pp. 64-65.

Smolander, K., “What is Included in Software Arefiture? A Case
Study in Three Software Organizations9" Annual |EEE
International Conference and Workshop on the Ergying of

Computer-Based Systen2902, pp. 131 — 138.

Ohlsson, L.; Johansson, C., “A practice driven epph to software
engineering educationEEE Transactions on Educatiprvol. 38,

No. 5, 1995, pp. 291-295.

Favela, J., Pena-Mora, F., “An experience in coltabive software
engineering educationlEEE Softwargv/ol.18, No. 2, 2001, pp. 47-
53.

“O uso de arvores de qualidade para 0 mapeamenteqdeésitos ndo
funcionais”, class notes for AQS, Mestrado Profisai em

Engenharia da Computacéo, Instituto de Pesquisasolgicas,
2005.

“Explicitando requisitos ndo funcionais atravéssitmulagdo”, class
notes for AQS PCS-2420, Engenharia Elétrica comfasénem
Computacdo — Departamento de Computacéo e Sisteigaais da

Escola Politécnica da Universidade de Sédo Padla0g.

September 3 — 7, 2007

International Conference on Engineering Education 4CEE 2007

