
Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

Teaching Software Architecture Quality based on
run-time metrics

Renato Manzan de Andrade 1, Reginaldo Arakaki 2

1 Renato Manzan de Andrade, Computing Engineering and Digital Systems Department - Polytechnic School of the University of São Paulo - São Paulo –
SP, 05508-900, Brazil, renato.manzan@poli.usp.br
2 Reginaldo Arakaki, Computing Engineering and Digital Systems Department - Polytechnic School of the University of São Paulo - São Paulo – SP, 05508-
900, Brazil, reginaldo.arakaki@poli.usp.br

Abstract - Software architecture is strongly related to system
quality, since it drives the whole development process. In
large systems, the achievement of qualities such as
functionality, efficiency, reliability, and maintainability
depends more on the overall software architecture than on
code-level practices. It is cost effective to try to determine,
before a system is built, whether it will satisfy its desired
qualities. By these reasons, evaluating software architecture
quality has become one of the most important decisions in
the software development cycle. To support this decision,
many software architecture evaluation methods with distinct
goals and approaches have emerged in the last few years.
These methods can assist the developer in creating a
software architecture that will have a potential to fulfill the
requirements on the system. Although software architecture
is part of Software Engineering undergraduate curriculum, in
many cases software architecture quality classes do not
explicit clearly the importance of this issue. Students have
strong programming skills, but very seldom know
architectural quality concepts and their influences on
software quality, costs and maintenance. This paper
describes a practical approach to teach software architecture
quality based on run-time metrics and presents the
application of this approach in an advanced software
laboratory undergraduate discipline.

Index Terms - Software Architecture, Software Quality, Run-
time metrics, Software Engineering Education.

INTRODUCTION

Software-intensive systems play an increasingly important
and central role in all aspects of everyday life becoming a
critical factor to the successful operation of systems,
including not only life-critical control systems, but also
ordinary communication and commerce [1].

In software-intensive systems, the achievement of
qualities - such as performance, availability, security, and
modifiability - is dependent on the software architecture. In
addition, quality attributes of large systems can be highly
limited by a system’s requirements and constraints [2].

Software quality can be defined as defined as the degree
to which a customer or user perceives that software meets his or
her composite expectations [3].

Furthermore, it is always more cost-effective to evaluate
software quality as early as possible in the life cycle of the

system. The obvious risk is that potentially large amounts of
resources will have been put into building a system which
does not fulfill its quality requirements [3]. For this reason, it
is important to evaluate and determine whether a system is
destined to satisfy its desired qualities or not before it is
built[4].

Besides the Introduction, the paper is structured as
follows. The next section provides background and
motivation for this work. The third section presents some
concepts about software metrics and its relations to software
architecture quality. An approach based on a framework to
teach software architecture quality created by the authors is
presented in the fourth section.

An example of application of the framework in an
advanced software laboratory undergraduate discipline is
presented in the fifth section, emphasizing non-functional
requirements, its metrics and the framework activities to
teach software architecture quality. A summary conclusion is
provided in the sixth section and the references used in this
papers are listed in the last section.

SOFTWARE ARCHITECTURE QUALITY

Designing software architecture is a complex process,
involving the creation of solutions to complex, multi-faceted
problems, which often do not have a single optimal solution,
but only a number of acceptable ones. One particularly
difficult aspect of the architectural process is ensuring that a
system will meet its quality requirements [1]. There are
several reasons that explain the complexity of achieving
quality attributes through software architecture including a
lack of specificity in the requirements, a shortage of
documented knowledge of how to design for particular
quality attributes, and the trade-offs involved in achieving
quality attributes [2].

While getting a system’s functionality correct is
important, many systems are considered to be failures
because they are lacking in one or more critical non-
functional qualities, such as security or scalability.

Understanding the relationship between architectural
decisions and a system’s quality attributes revealed software
architecture validation as a useful risk-reduction strategy [3].

The idea of predicting the quality of a software product
from a higher-level design description is not a new one. In
1972, Parnas described the use of modularization and
information hiding as a means of high level system

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

decomposition to improve flexibility and comprehensibility.
In 1974, Stevens et al. introduced the notions of module
coupling and cohesion to evaluate alternatives for program
decomposition. During recent years, the notion of software
architecture has emerged as the appropriate level for dealing
with software quality.[5].

Quality permeates all aspects of software development
from the initial requirements gathering process to the
operation of the executable system. The quality of a system
is directly related to the ability of the system to satisfy its
functional, nonfunctional, implied, and specified
requirements [6] A system has many characteristics such as
functionality, performance, and maintainability. The quality
of each of these characteristics comprises the total quality of
the system. Each characteristic can be specified as an
attribute of the system [7].

Quality attributes can be represented using quality
models. Quality models are systems that relate various
quality attributes and, in some cases, identify key
engineering practices to address them and metrics
appropriate for measuring or observing them. Each model
uses different terminology, but they share general concepts
as internal quality attributes and external quality attributes
usability, efficiency), The quality metamodel can be used as
a basis for describing various quality models. The Figure 1
shows a quality metamodel.

FIGURE 1 - QUALITY METAMODEL [7]

A quality model is a specific instance of the quality

metamodel and defines specific characteristics, quality
attributes, and metrics. In this paper, the ISO-9126 instance
of the quality metamodel is used.

IS0 9126 [8] proposes a general quality model, based in
McCall’s model, to specify and evaluate the quality of a
software product from different perspectives or views,
acquisition, development, maintenance. It considers internal
quality characteristics, which are related to the software
development process and environment or context and
external characteristics, which are observed by the end-user
on the final software product.

The view of quality can be internal or external, and it
also affected by the stakeholder view in the particular stage
of development.

The quality characteristics of the ISO 9126 quality
model are refined into attributes, which can be measured to
enrich the information about the architecture. [9].

ISO-9126 lists 6 quality characteristics: functionality,
reliability, usability, efficiency, maintainability, and
portability. These characteristics are refined into 8
subcharacteristics: efficiency, maintainability, portability,
reliability, security, integrability, scalability and usability.

SOFTWARE M ETRICS

The achievement of quality attributes of a system is
intimately connected with the software architecture for that
system [10].

The desired combination of attributes quality shall be
clearly defined; otherwise, assessment of quality is left to
intuition.

Quality attributes form the basis for architectural
evaluation, but simply naming the attributes by themselves is
not a sufficient basis on which to judge an architecture for
suitability. Often, requirements statements like the following
are written [11]:
• "The system shall be robust."
• "The system shall be secure from unauthorized break-

in."
• "The system shall exhibit acceptable performance."

Without elaboration, each of these statements is subject
to interpretation and misunderstanding because the concept
of quality is a subjective term. The use of software metrics
can help to decrease the abstractness of software quality
statements [11].

Defining software quality for a system is equivalent to
defining a list of software quality attributes required for that
system and identify a set of software metrics.

The purpose of software metrics is to make assessments
throughout the software life cycle as to whether the software
quality requirements are being met. The use of software
metrics reduces subjectivity in the assessment and control of
software quality by providing a quantitative basis for making
decisions about software quality. However, the use of
software metrics does not eliminate the need for human
judgment in software evaluations.

The use of software metrics within an organization or
project is expected to have a beneficial effect by making
software quality more visible [6].

More specifically, the use of software metrics for
measuring quality allows an organization to:
• Achieve quality goals;
• Establish quality requirements for a system at its outset;
• Establish acceptance criteria and standards;
• Evaluate the level of quality achieved against the

established requirements;
• Detect anomalies or point to potential problems in the

system;
• Predict the level of quality that will be achieved in the

future;

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

• Monitor changes in quality when software is modified;
• Assess the ease of change to the system during product

evolution;
• Validate a metric set.

Software metrics is slowly becoming an integral part of

software development and are used during every phase of the
software development life cycle. Research in the area of
software metrics tends to focus predominantly on static
metrics that are obtained by static analysis of the software
artifact.

Estimating software quality attributes based on dynamic
metrics for the software system are more accurate and
realistic [12].

TEACHING SOFTWARE ARCHITECTURE QUALITY BASED
ON RUN-TIME METRICS

Software metrics are acknowledged by both software
engineering researchers and educators as being of great
importance in improving the software development process.
Unfortunately, the current practice in industry is to largely
ignore metrics and work at an instinctive level.

Current software engineering curriculums emphasizes
software analyses, design and construction, but do not
address the complexity of a real-world. In software
architecture classes the students normally build and deployed
many systems, but the patterns of success and failure are not
studied.

In the same way, explored theoretical frameworks for
describing software architectures and processes to build them
are taught, but almost no effort to evaluate them in the real
world is done.

In general, software architecture classes are presented in
a very theoretical and abstract way, but the students have
weak intuitions about high-level architectural abstractions
and quality attributes.

Students have strong programming skills, but very
seldom know architectural concepts and their influences on
software quality, productivity, costs, and maintenance. These
students tend to immediately start coding once they receive a
problem to be solved [13]. These results in a serious gap in
software engineering curriculum: students are expected to
learn how to design complex systems without the requisite
intellectual tool for doing so effectively [14].

An alternative to improve industry practice seems to be
to educate current software engineering students into
accepting metrics as a normal part of the software
engineering process [15].

To teach to undergraduates software engineering
students the importance of software metrics to achieve
software quality, a framework for software architecture
quality education created by the authors was used [16].

The main purpose of this framework is to help teaching
students how to develop software systems from an
architectural point of view, considering quality attributes
issues and using software metrics to evaluate them.

The framework goals were defined in terms of what
students should be able to do after successfully using the
framework:

• Acquire an architectural level mental model considering
quality attributes;

• Recognize the importance of an architecture-centric
approach;

• Create a software metrics plan to improve system
quality;

• Generate reasonable architectural alternatives for a
problem and choose among them, based on functional
and non-functional requirements;

• Construct proof of concepts to evaluate, improve or
reject the software architecture of a system;

• Obtain real-world experience in software engineering.

The educational framework is based on the Bloom

taxonomy of educational objectives (knowledge,
comprehension, application, analysis, synthesis, evaluation).

Bloom's Taxonomy was first designed as a guide for
measuring learning objectives in a specific field or domain.

However, it is to provide a fine-grained model for
evaluating students’ knowledge of software architecture
quality based on run-time metrics. In this context the
software metrics can be viewed as a body of knowledge (or
domain) that the student employs when performing software
architecture development and evolution tasks. This
taxonomy provides a framework within which students’
knowledge of this domain can be assessed [17].

The framework for software architecture quality
education has the following characteristics:
• Practical approach: usually software architecture

quality and its metrics are presented in a very theoretical
and abstract way, but the students have weak intuitions
about high-level architectural abstractions and quality
attributes. Real world examples of software architectures
metrics, collected from practical examples, lead to a
better understanding of its concepts and quality trade-
offs.

• Problem-based learning: engineering education is
undergoing significant changes, notably in the way
engineering schools are adopting problem-based
instruction to meet the changing demands of engineering
practice. Mastery of technical content is no longer
sufficient. Increasingly, engineering programs are
requiring students to work projects that are open-ended
with loosely specified requirements, produce
professional quality reports and presentations, consider
ethics and the impact of their field on society, and
develop lifelong learning practices. An implicit goal of
this shift in curricula is to produce graduates who will be
ready to assume engineering tasks upon graduation—
that is, with the skills to develop solutions to problems
under competing constraints of functionality, cost,
reliability, maintainability, and safety [18]. In problem-
based learning, students are actively involved with
problems coming from real practice. The framework
uses the following steps to applies the problem-based
learning to teach software architecture quality [19]:

1. Identify concepts and parts of the problem that
needs clarification
2. Define the problem

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

3. Analyze the problem and brainstorm about
solutions
4. Structure solutions
5. State learning objectives
6. Study directed towards learning objectives
7. Report things learned and application to the
problem

The students do not realize the importance of non-
functional requirements and its influences on software
architecture quality. This is caused by the students’ lack
of experience in working with non-functional
requirements. Due the lack of experience or even
comprehension, non-functional requirements are not an
interesting topic to the students. The framework uses a
problem-based learning to teach software architecture
quality in a more attractive way.

• Non-functional requirements metrics: Non-functional
requirements impact directly on measures such as
productivity and cost. Ultimately, it is these quantitative
measures that determine the justification for investment
in a software development project. In view of this reality
it is surprising that non-functional requirements are
often ignored in the analysis process [20].

• Simulation techniques: Simulation has been used in
engineering disciplines for many years to great
advantage. In recent years, an increasing amount of
attention has been paid to using simulation to advance
software engineering. There are some areas in which
simulation can benefit software engineering, including:
assessing the costs of software development, supporting
metric collection, requirements and project
management, training, process improvement, risk and
acquisition management [21]. Simulations can also
produce visualizations of the architecture’s execution.
[22]. These visualizations are particularly useful for
identifying software architecture failures as bottlenecks
points, resources starvation, memory leaks, low
performance, etc. Simulation, done during the
architecture and design stage, is also a low cost
alternative to the actual implementation and execution of
a real system.

• Intensive use of proof of concepts: proof of concept is
used as evidence that the chosen software architecture is
viable and capable of meeting quality attributes
requirements.

• Real-world projects: incorporating real-world
problems of sufficient magnitude and complexity into
the framework is necessary to enable effective learning
of software architecture quality skills and concepts, so
the framework attempts to model the "real-world" as
closely as possible.

• Project-based classes: some courses should be set up to
mimic typical projects in industry. These should include
group-work, presentations, formal reviews, quality
assurance, etc. It can be beneficial if such a course were
to include a real-world customer or customers. Students
should also be able to experience the different roles
typical in a software engineering team: project manager,
tools engineer, requirements engineer, etc. [23].

• Incremental learning: knowledge is often hierarchical,
and frequently the best way to assure performance on
higher-level objectives is to identify the prerequisite
skills needed for a current unit of instruction and
ascertain that students have mastered them. Based on
this premise and considering the richness, the
complexity and the multiple dimensions of software
architectures quality concepts, the framework uses a
incremental approach, so the topics are presented in an
increasing abstraction level.

• Learner-based teaching: traditional education practice
seems to be built on an assumption that the mind is a
container, and it is the teachers’ responsibility to fill this
with knowledge. Learner-based teaching means that
education is not viewed as a process where knowledge is
transferred from the teacher to the student, but rather
that knowledge is create within the students’ minds. The
framework adopt a practice driven education model
where software architecture quality concept is regarded
as something which cannot be taught entirely, but must
be built by each individual requiring a engaged and
proactive attitude on the part of students. This approach,
which goes from the concrete to the abstract, capitalize
on the innate human desire to explore and learn that is
characterized by “practice-pull”, rather than “theory-
push” [24].

• Team work: the Capability Maturity Model (CMM)
states that, as organizations reach higher levels of
maturity, individual activities become team activities
[25].

In the framework for software architecture quality
education, the definition of software quality metrics that
must be collect is based on architecture assessment. This
technique encompass a set is the activity of measuring or
analyzing a system's architecture in order to understand its
quality attributes. The main goal of assessment of
architecture design is improve the potential quality of the
system before it is implemented.

Architecture assessment also facilitates the application
of design methods and provides the tools to compare design
variations and eliminate them, thus reducing the potential
solution field.

In order to make non-functional quality attributes
measurable or observable, they must be reified as concrete
tasks or scenarios. A technique developed at Software
Engineering Institute (SEI) is to convert quality attribute
requirements into concrete scenarios for users, developers,
and maintainers. Scenarios can be a very powerful
specification technique because they make seemingly vague
or abstract requirements into tangible concrete tasks.

Scenarios can be realized through the creation of a
quality attribute utility tree, which is one of the main steps of
SEI's Attribute Trade-off Analysis Method (ATAM) [26].
An example utility tree is represented in Figure 2.

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

FIGURE 2 – QUALITY UTILITY TREE [11]
The utility tree is used to translate abstract requirements

into concrete scenarios used to analyze a system's
architectural design.

APPLYING THE FRAMEWORK

The framework for software architecture quality education
has been used to teach undergraduate students of an
advanced software engineering laboratory discipline at
Computing Engineering and Digital Systems Department of
Polytechnic School of the University of São Paulo.

In order to create a learning scenario, the project should
not start from scratch but, as in most industrial projects, the
project should start with an existing system that needs to be
extended, modified or measured. A short, imprecise
requirements description and the legacy application are given
to students.

After challenging the students with of a real world
project assignment, the primary strategy was to involve and
motivate them in a full life cycle team project, where the
teacher plays the role of “the client”. This gives the students
first hand personal experience in the effects of making
architectural decisions on their project and on the clients’
satisfaction with their product.

The concepts of non-functional requirements and
software metrics were presented to the students.

Considering non-functional requirements concepts, an
evaluation of the legacy system is done. Possible quality
improvements are identified and some non-functional
requirements, mainly those that can be measured by run-time
metrics, were chosen.

From the chosen non-functional requirements, an
ATAM quality attribute utility tree and scenarios were
defined to guide the software quality evaluation and metrics.

In order to leverage the pedagogical content of the
classes some mechanisms as simulators, proof of concepts,
dependency injection and monitoring tools were build by the
students. A computer resource monitoring page is shown in
Figure 3:

FIGURE 3 – COMPUTER RESOURCE MONITORING PAGE

The construction and use of these mechanisms are very
important to improve the students understanding of software
architecture quality and non-functional requirements. Using
simulation techniques and proof of concepts is possible to
explore many failure situations from real world systems as
bottlenecks, resources starvation, low database performance,
shared data synchronization. The results of simulations are
logged and analyzed by monitoring tools [27].

When the students were introduced to these situations,
they rapidly realized how important the non-functional
requirements are for the overall software architecture quality.

The collected metrics were evaluated based on the utility
quality tree and for the ones under an acceptable quality
level, some actions to improve the software architecture were
implemented.

The process is repeated until the metric value reaches
the desired quality level. The framework activities are
represented in an UML activity diagram, shown in Figure 4:

FIGURE 4 – FRAMEWORK ACTIVITIES

Coimbra, Portugal September 3 – 7, 2007
International Conference on Engineering Education – ICEE 2007

The (re)design and metrics evaluated were presented by
each group, so the major architectural decisions were shared
by all students

In the classes, the students were able to analyze in
practical way the non-functional requirements by an
architectural point of view and its importance to meeting
software quality. Under this learning scenario, others
essential software engineering skills were also trained as
team work, software project management, software
architecture design and communication skills, in a realistic
environment and in architectural-centric approach.

The evaluation of the application of framework was
done by a learning questionnaire answered by the students.
Analyzing the students’ answers, the metrics values and the
quality attributes of the resulting system (after the cycles of
architectural redesign), there are evidences that the concepts
taught by the discipline were learned.

CONCLUSIONS

This framework is been developed by the authors since 2003
and has already been applied in 20 class groups, with
approximately 18 students per class, resulting in around 5550
class hours, including undergraduate and graduated
disciplines and mentoring on the job activities. The students’
feedback on the use of framework has been very positive.

The authors believe strongly that including practical
software metrics formally in software engineering curricula
in order to obtain software quality from an architectural point
of view can help the universities to achieve their core goals
in higher education, supplying the growing demand of
society for high skilled system architects.

REFERENCES

[1] Woods, E. and Rozanski, N., “Using Architectural Perspectives”,
Proceedings of the 5th Working IEEE/IFIP Conference on Software
Architecture (WICSA'05), Vol. 00, 2005, pp. 25-35.

[2] Bachmann, F., Bass, L., Klein, M. and Shelton, C., “Designing
software architectures to achieve quality attribute requirements”,
Software, IEE Proceeding, Vol. 152, No 4, 2005, pp. 153- 165.

[3] Bazzana, G., Andersen, O., Jokela, T., “ISO 9126 and ISO 9000:
friends or foes?”, Software Engineering Standards Symposium, 1993,
pp. 79 – 88.

[4] Kazman, R., Bass, L., Abowd, G., Webb, M., “SAAM: A Method for
Analyzing the Properties of Software Architectures,” Proceedings of
the 16th International Conference on Software Engineering. (ICSE
94), 1994, pp. 81–90.

[5] Dobrica L.; Niemela E., “Survey on Software Architecture Analysis
Methods”. IEEE Transactions on Software Engineering, vol. 28, No.
7, 2002, pp. 638-653.

[6] IEEE, “IEEE Standard for a Software Quality Metrics Methodology”,
IEEE Std 1061-1998. (Revision of IEEE Std 1061-1992), 1998.

[7] Albin, S., The Art of Software Architecture: Design Methods and
Techniques, Wiley, 2001.

[8] ISO/IEC 9126 International Standard. Information technology -
Software product evaluation - Quality characteristics and guidelines
for their use, 1991.

[9] Losavio, F., Chirinos, L. and Perez, M.A., “Quality models to design
software architectures”, Technology of Object-Oriented Languages
and Systems, 2001. TOOLS 38. Proceedings, 2001, pp. 123-135.

[10] Pinna, C., “Um roteiro centrado em Arquitetura para minimização de
riscos e incertezas em projetos de software”, M.S. thesis, Escola
Politécnica da Universidade de São Paulo, São Paulo, Brazil, 2004.

[11] Clements, P., Kazman, R. and Klein, M., Evaluating Software
Architectures: Methods and Case Studies, Addison-Wesley
Professional, 2002.

[12] Gunnalan, R., Shereshevsky, M. and Ammar, H., “Pseudo dynamic
metrics”, Conference on Computer Systems and Applications, 2005,
pp. 117-vii.

[13] Rosca, D.; Tepfenhart, W.; Mcdonald, J., “Software Engineering
Education: Following a Moving Target”, Proceedings of the 16th
Conference on Software Engineering Education and Training
(CSEET’03), 2003, pp. 129-139.

[14] Shaw, M., “Software engineering education: a roadmap”, International
Conference on Software Engineering - Proceedings of the conference
on The future of Software engineering, 2000, pp. 371-380.

[15] Thomas, R, “A practical experiment in teaching software engineering
metrics”, Software Engineering: Education and Practice, 1996.
Proceedings. International Conference, 1996, pp. 226-232.

[16] Andrade, R., “Um framework para o ensino de arquitetura de
software”, M.S. thesis, Escola Politécnica da Universidade de São
Paulo, São Paulo, Brazil, 2005.

[17] Buckley, J. and Exton, C., “Blooms’ Taxonomy: A Framework for
Assessing Programmers’ Knowledge of Software Systems”, 11th IEEE
International Workshop on Program Comprehension (IWPC'03),
2003, pp. 165-174.

[18] Chung, G., Harmon, T.C. and Baker, E.L., “The impact of a
simulation-based learning design project on student learning”, IEEE
Transactions on Education, Volume: 44, No. 4, 2001, pp. 390-398.

[19] Koper, R., “Modeling Units of Study from a Pedagogical Perspective:
the pedagogical meta-model behind EML”. Open Universiteit
Nederland, 2001.

[20] Pasternak, T., “Using trade-off analysis to uncover links between
functional and non-functional requirements in use-case analysis”,
IEEE International Conference on Science, Technology and
Engineering, 2003, pp.3- 9.

[21] Collofello, J.S., University/industry collaboration in developing a
simulation based software project management training course,
Proceedings. 13th Conference on Software Engineering Education &
Training, 2000, pp. 161- 168.

[22] Barber, K.S. and Holt, J. Software architecture correctness, IEEE
Software, Vol. 18, No. 6, 2001, pp. 64-65.

[23] Smolander, K., “What is Included in Software Architecture? A Case
Study in Three Software Organizations”, 9th Annual IEEE
International Conference and Workshop on the Engineering of
Computer-Based Systems, 2002, pp. 131 – 138.

[24] Ohlsson, L.; Johansson, C., “A practice driven approach to software
engineering education”, IEEE Transactions on Education, Vol. 38,
No. 5, 1995, pp. 291-295.

[25] Favela, J., Pena-Mora, F., “An experience in collaborative software
engineering education”, IEEE Software,Vol.18, No. 2, 2001, pp. 47-
53.

[26] “O uso de árvores de qualidade para o mapeamento de requisitos não
funcionais”, class notes for AQS, Mestrado Profissional em
Engenharia da Computação, Instituto de Pesquisas Tecnológicas,
2005.

[27] “Explicitando requisitos não funcionais através de simulação”, class
notes for AQS PCS-2420, Engenharia Elétrica como ênfase em
Computação – Departamento de Computação e Sistemas Digitais da
Escola Politécnica da Universidade de São Paulo , 2006.

