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Abstract - The achievements of engineering students are 
evaluated using particular grading scales. Arithmetic 
mean is usually employed for grade aggregation. We show 
that this measure renders correct results only for 
equivalent scales as defined in the paper. If grades from 
non-equivalent scales are aggregated, rank “errors” as 
well as “absurd” averaging may happen, as we originally 
observed in practice. Decision-making based on arithmetic 
mean aggregation of grades may be true, false, or fuzzy, 
according to our analysis. We also argue for the choice of 
grading scales in conducting cross-comparison of students’ 
achievements. Our analysis also has relevance for regular 
grading and scaling methods, which we tested on 
engineering students with excellent student feedback. The 
grading technique proposed in this paper is particularly 
suited to engineering courses and it appears fit for 
promoting higher teaching and evaluation standards, 
paralleled by increased interest and higher competition 
levels for all student categories.  
 
Index Terms - achievement and evaluation, decision-making, 
equivalent scales, grading scales, grade or mark conversion. 

INTRODUCTION  

Internationalization of universities, mobility of students 
between departments, schools, states, or countries, distance 
education and globalization trends in general are factors 
contributing to engineering graduates having grades assigned 
on multiple grading scales. The problem of assessing student 
overall performance is obvious and arises from the need to 
compare achievements. Finding the right measure for this 
purpose is not the topic of our investigation here. Instead, we 
focus our attention on a measure often used in practice, 
namely, the arithmetic mean of students’ grades and on how 
this can consistently be used for such a purpose.  

Evaluating engineering students’ course performance (but 
not only) may be a difficult task as marks have an important 
function for student selection processes [1]. Grading scales 
with different numerical assignments are used nationally and 
internationally for achieving this goal. Scales can be classified 
into different categories [2]-[5]. Different marking techniques 
try to measure student achievement and to group students in 
ordered categories, which actually do not have a linear 
correspondence to the degree of knowledge measured. 

Therefore, it is worth noting that the types of grading scales 
used in schools are ordinal [6, p. 114], [7, p. 305].  

Letter grade (l.g.) scales represent an important type of 
grading scales; initially developed at Harvard [8], they now 
carry an intuitive meaning [9, p. 26] and are used extensively 
in North America. Although grades may carry some degree of 
subjectivity, they appear in transcripts as error-free.  

Although grading itself is a difficult task, assessing overall 
performance in a variety of courses for reliable cross-
comparison of student achievement is an even more 
challenging attempt. Whether more or less appropriate, the 
(weighted) arithmetic mean of individual grades is often 
employed in practice as a cross-comparison measure (it is well 
known that arithmetic mean is not an appropriate statistic for 
an ordinal scale [3], [6], [10], and educational grading scales 
are in fact ordinal). Some decision-making processes are based 
on the interpretation of the (weighted) arithmetic mean of 
measured data sets and are often employed in schools for 
candidate selection. In a recent work [10] we proved a 
theorem for the selection of ordinal scales that are equivalent 
from the point of view of arithmetic mean. In this case, 
comparison of arithmetic mean (ranks) originating on different 
ordinal scales is appropriate.  

Some essential properties of particular grading scales used 
in conjunction with the arithmetic mean will be presented in 
this paper by means of examples. We are not dealing with 
mathematical proofs for the statements we make. The 
mathematically inclined reader is directed to [10], [11] for 
such purpose. Although letter grades will be used in our 
examples, this does not significantly limit the generality of our 
analysis of scales, as l.g.s will stand for common ranks with a 
particular meaning associated with student achievement. 
Using (weighted) grade averages [12] in assessing overall 
student achievement has certain consequences, not necessarily 
intuitive. The result of mathematical manipulations of grades 
as frozen measurements can be evaluated and it constitutes the 
reason for presenting our research results.  

Our interest in this topic was prompted by several 
counterintuitive examples we have come across. For instance, 
one graduate student with a degree from a reputable university 
in North America started a graduate program at another 
reputable university in North America. His course averages 
were A- and A, respectively, on the grading scales of the 
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issuing institutions. The second institution required an overall 
A- average in order to be admitted in scholarship 
competitions; although the student’s achievements have been 
ranked as at least A- for each individual school, his overall 
calculated average (for both schools) has never met the 
minimum A- criterion to qualify for scholarships.  

The goal of this paper is to contribute to the deeper 
understanding of results observed in practice (such as the one 
mentioned above) and to provide support for improving 
decision-making procedures relying on grade averaging as an 
overall assessment of student achievement. Based on the 
criteria we developed for equivalent grading scales, we 
suggest marking procedures when scaling/curving of the 
grades is involved.  

LETTER GRADES AND ARITHMETIC MEAN AS AN OVERALL 

MEASURE OF STUDENT ACHIEVEMENT  

The letter grade scale can usually be represented as a set 
S = {A, B, C, D, E, F} 

where the letter grade categories are associated to hierarchic 
ranks A >B > C> D > E > F (“ >” stands for “higher in rank 
than”) and individual letter grades may have subranks (for 
instance A+ >A > A− > B+ > B > B− > C+ >C > C− > D+ > 
D > D−). For the purpose of our examples, we will consider 
the following l.g. (sub)scale: S={A+, A, A−, B+, B, B−, C+, 
C, C−}. A popular numerical assignment associated with this 
l.g. scale is Sa={A+=4.(3), A=4, A−=3.(6),  B+=3.(3), B=3, 
B−=2.(6), C+=2.(3), C=2, C−=1.(6)}. Another numerical scale 
is often used in correlation with conversion of l.g.: 
Sb={A+=12, A=11, A−=10, B+=9, B=8, B−=7, C+=6, C=5, 
C−=4}. Assuming that measuring student performance 
resulted into a set of grades s1 = {A, B, C} and the arithmetic 
mean of the numerical assignments needs to be calculated, this 
average is regularly employed as a measure of the overall 
achievement of the student. For instance, if the student was 

graded on scale Sa, then the set of grades is 1
as  = {x1 = 4, x2 = 

3, x3 = 2} with an arithmetic mean of 
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The common interpretation of this average is an overall 
educational achievement of rank B. Let the set of grades of 

another student be s2 = {A, A, B, C} (corresponding to 2
as  = 

{4 , 4, 3, 2}). The average on scale Sa for this set of grades is  

25.3
4

2344
)( 2 =+++=ab sM  (< 3.(3) = B+). 

The interpretation of this average is also a rank B (with the 
common assumption that in the case of an average falling in 
between the scales’ numerical assignments, the rank of the 
average is associated with the lower l.g. of the numerical 
values). It can be easily verified that had the students been 
graded and evaluated on the Sb scale, results similar to those 

on Sa would be obtained for the rank of arithmetic mean: 1
bs = 

{11, 8, 5}, 2
bs = {11, 11, 8, 5} and 

8
4

5811
)( 1 =++=bb sM    � rank B on Sb; 

75.8
4

581111
)( 2 =+++=bb sM    (< 9) � rank B on Sb. 

Let us consider the scale Sc={A+=30, A=26, A−=22, B+=18, 
B=15, B−=12, C+=9, C=7, C−=5}. The l.g. set s2 has the 

numerical form 2
cs = {26, 26, 15, 7} with an arithmetic mean 

5.18
4

7152626
)( 2 =+++=cc sM    (< 22) � rank B+on Sc. 

Thus, evaluating the same set of l.g.s on scales Sa and Sb 

provided the same rank for the arithmetic mean (B) and a 
different rank (B+) on Sc. This simple example shows that the 
corresponding rank of the arithmetic mean depends on the 
numerical assignments of the scale where the average is 
calculated. Naturally, some questions arise: 
1) is the correspondence of the ranks of average associated 
with Sa and Sb always valid? 
2) what are the general conditions that numerical assignments 
for scales need to meet so that evaluating the rank of the 
average on either scale may always preserve the rank?  

Empirical verification of the ranks of calculated averages 
(for the same set of l.g.s) for numerical assignments on both Sa 
and Sb does confirm that the two numerical scales are 
equivalent in this respect. We answered the second question 
by demonstrating a theorem for equivalent scales [10]. Our 
theorem says that if two numerical assignments of the same 
categories of a grading scale (for instance {A+, A, A-, B+, B, 
B-, C+, C, C-}) are linearly related, then the rank of the 
arithmetic mean of an arbitrary set of grades is the same, 
irrespective of the numerical scale. Let x1, x2, . . . ,xn be the 
numerical assignments increasing in values (and ranks) of a 
grading scale Sx = {x1, x2, ..., xn}, and y1, y2, . . . , yn the 
corresponding values (and ranks) for the grading scales Sy = 
{ y1, y2, ..., yn}. The two scales will produce the same type of 
ranks of the arithmetic mean for any set of gades if and only if  

bxay ii +=     (i = 1, 2, . . ., n)                 (2) 

where a and b are real constants. It can be verified that Sa and 
Sb are related according to relation (2), while Sa and Sc or Sb 

and Sc are not. Therefore, Sa and Sb are equivalent and they are 
not equivalent to Sc. If a certain group of students has been 
graded using numerical assignments from Sa, it would be 
correct to use Sb for comparison of grades or averages. 

OVERALL STUDENT ACHIEVEMENT ASSESSED FOR SETS OF 

GRADES ORIGINATING ON NON-EQUIVALENT SCALES 

It was previously argued that ranks of the same set of l.g.s 
may vary and we will call these scales non-equivalent. Any 
two scales with numerical assignments (ranks) not following a 
linear relation (2) are non-equivalent. However, even if such a 
linear relation existed, it would not render the scales 
equivalent unless a one-to-one correspondence of ordered 
ranks (and subranks) were present. For example, Sa1={A=4, 
A−=3.(6), B+=3.(3), B=3, B−=2.(6), C+=2.(3), C=2, 
C−=1.(6)} is not equivalent to Sa because there is no one-to-
one correspondence for the ranks of the scales.  
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TABLE I 

DIFFERENT NUMERICAL ASSIGNMENTS OF LETTER GRADE CLASSES  

Li (l.g.) Sh Sa Sb 
           A+         90, …, 100           4.(3)      12 

           A         85, …, 89           4      11 

           A-         80, …, 84           3.(6)      10 

           B+         77, …, 79           3.(3)        9 

           B         74, …, 76           3        8 

           B-         70, …, 73           2.(6)        7 

           C+         67, …, 69           2.(3)        6 

           C         64, …, 66           2        5 

           C-         60, …, 63           1.(6)        4 
 

Some numerical assignments for letter grade scales are given 
in table I for direct comparison.  

It was argued that Sa and Sb are equivalent. There is a one-
to-one correspondence between the ranks of Sh and those of Sa. 
However, Sh contains subranks having numerical assignments 
to be used, for instance, in calculating the average of grades. 
The subranks of Sh do not have distinct meaning in Sb and 
therefore Sh and Sa are non-equivalent with respect to 
arithmetic mean. A justified endeavor would be to assess the 
impact of calculating the overall rank of arithmetic mean of 
sets of grades when the grades originate on scales with 
nonequivalent numerical assignments. We will therefore study 
averages of combined sets of l.g.s from Sb and Sh. As 
previously argued, Sa and Sb are equivalent and therefore the 
results of the study are identical if we use Sa and Sh instead.  

Let us consider a student who obtained a set of l.g.s 1
bs  on 

Sb (which becomes 1hs  on Sh) and another set 2hs  on Sh (which 

becomes 2
bs  on Sb). If the student’s numerical grades obtained 

on Sh are 1
hs  = {100, 89, 89, 79, 66}={ 100, 2x89, 79, 66h}  

and those on Sb are 1
bs  ={11, 11, 10, 10, 9 }={ 2x11, 2x10, 10, 

9 b} then the calculation of the arithmetic mean for each set of 

grades gives 
6.84)( 1 =hh sM    (< 85) � rank A- on Sh; 

2.10)( 2 =bb sM    (< 11) � rank A- on Sb. 

The pair of sets (1hs , 2
bs ) characterizes overall student 

performance and if an overall arithmetic mean for all grades is 
to be calculated a conversion scheme/rule must be established. 
The usual conversion of sets of grades to/from Sh from/to 
numerical scale Sb is performed between similar l.g.s 
according to the intuitive correspondence indicated in Table I. 

In order to calculate the average of all grades on Sb, set 1
hs  

needs to be converted to a set corresponding to 1
bs  on Sb. In 

order to perform this operation one has to identify l.g. classes 
1
hs  = {A+, 2xA, B+, C} with corresponding numerical values 

on Sb  
1
hs ={ 12, 2x11, 8, 5 b} . 

 
TABLE II 

EXAMPLES OF ABSURD AVERAGING   

{ )( 1
hh sM , )( 2

bb sM  } 
� )()( 2,1 t

bbbb sMsM =  

   {  A+   ,       A-  } �                    B+ 

   {  A     ,       A    } �                    B+ 

   {  A-    ,       A    } �                    B+ 

   {  A     ,       A-   } �                    B+ 

   {  A-    ,       A-   } �                    B+ 

   {  A-    ,       A-   } �                    B 

   {  B-    ,       B-   } �                    C+ 

   {  B     ,       B-   } �                    C+ 
 

The 2,1
bs  concatenated set of grades 1

bs  and 2
bs  gives  

t
bs = 2,1

bs ={ 12, 4x11, 2x10, 9, 8, 5 b}  

and its average is 
9.9)( =t

bb sM    (< 10) � rank B+ on Sb; 

The following counterintuitive result has been obtained: the 
average of two sets of grades, both with average ranks of A−, 
resulted into a concatenated set of converted grades with an 
arithmetic mean of rank B+ 

{( A−)h, (A−)b )}  � (B+)b . 
Many other examples of this type can be found, as shown in 
Table II.  

One would expect that the rank of the arithmetic mean of 
two concatenated sets would always lie between the ranks of 
averages of each independent set [10]. The explanation for this 
apparent contradiction is rooted in the fact that for all 
examples corresponding to cases in Table II, the rank of 

average for 1
hs  (when converted to Sb) is always lower than 

the one calculated for the concatenated sets 2,1
bs : 

)()()( 2,11 t
bbbbbb sMsMsM =< . 

For instance, in the case of the numerical example discussed 

above, the set of grades 1
hs ={ 100, 2x89, 79, 66 h} with an A- 

rank of average on Sh becomes 1
bs  ={ 12, 2x11, 8, 5b} , when 

converted to Sb, with a B+ average. Therefore, from a set of 
grades of B+ rank and one of A- rank, it is possible (it is also 
common-sensical) to obtain a B+ rank for the average of the 
concatenated set of grades. If the arithmetic mean is to be 
calculated on Sh (as opposed to Sb), to the same l.g. from Sb 
would correspond multiple numerical values on Sh. Therefore, 

converting 1
bs  to Sh (and obtaining 1

hs ) is fuzzy. However, 

minimum and maximum numerical values can be identified 
according to the minimum and maximum values associated 
with each l.g. class in Sh (see Table I). The fuzziness of grade 
conversion is further propagated into the calculations of 

arithmetic mean of concatenated sets (1
hs , 2

hs )= 2,1
hs = t

hs .  

We calculated averages for all possible combinations of l.g. 
as given in Table III. The comparison of the ranks of 
arithmetic mean can be summarized as follows: 
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• 25 l.g. combinations (69.4%) - the rank on Sb is lower 
than or equal to the one on Sh; 

• 1 l.g. combination (2.7% ) - the rank on Sb is strictly 
lower than the one on Sh; 

• 7 l.g. combinations (19.4 %) - the ranks on both scales are 
equal; 

• 3 l.g. combinations (8.3 %) - the rank on Sb is higher than 
or equal to the one on Sh. 

The rank of the concatenated sets of grades is not invariant 
to the scale but rather heavily depends on the inherent 
properties of the numerical scales. It can be concluded that 
calculating the average on Sb will normally result in ranks of 
the average lower than the corresponding ones calculated on 
Sh, scale Sb having a strong bias in this respect. Although the 
analysis here was performed on two particular non-equivalent 
scales, the result is rather general and the issue of scale 
selection is of utmost importance. If the rank of the average of 
sets of grades is considered to be correct on a particular scale, 
then other ranks that may be obtained on other scales can be 
considered erroneous. These rank “errors” may occur and they 
may consist of one, two, or more rank deviations when sets of 
grades from non-equivalent ordinal scales are compared. 
 

CRITERION FOR CHOOSING A ‘FAIR ’  SCALE FOR 

EVALUATING STUDENT ACHIEVEMENT  

Assuming that a student selection process is based on a 
minimum arithmetic mean rank of the overall sets of grades, 
conversions and multiple non-equivalent scales are usually 
involved. Decision-making processes may be inadvertently 
influenced by the very choice of the scale used for overall 
student evaluation. Grading students’ performance orders 
students in groups of hierarchic ranks for each individual 
course. Numerical assignments corresponding to each rank 
(for instance l.g.) are of no relevance as long as the hierarchy 
of ranks is known. However, evaluating overall student 
achievement may vary according to scale when non-equivalent 
scales are used.  

The averaging properties of the scales are dictated by their 
numerical assignments. Thus, each school or department 
implicitly adheres to hierarchic values generated by the 
averaging properties of its chosen type of scale used for 
grading its students. With this observation in mind and given 
that in general students have sets of grades obtained on 
numerical scales that are non-equivalent to the scale of the 
school or department where the overall assessment takes 
place, the ‘fair’ scale to be used for such purpose is obviously 
the scale employed by the school or department where the 
evaluation is performed. Although the conversion of grades to 
that scale may not be unique (as in the example of conversion 
from Sb to Sh), it provides a proper indication of how students 
could have performed overall on that scale, which represents 
the hierarchic values applied in the case of the school’s or 
department’s own students. In such a case, the comparison 
would be consistent with the locally accepted hierarchic 
values, as it is performed uniformly for all students and all sets 
of grades. 

TABLE III 
AVERAGING ELEMENTARY LETTER GRADE SETS 

l.g. elementary sets 
sti =    { Li   ,   Lj } 

Mh (s
ti) 

min    max 
Mb (s

ti) 
 

Rank 
Mh (s

ti) 
min   max 

Rank 
Mb (s

ti) 

st1 A+ C- 75 82 8 B A-      B 

st2 A+ C 77 83 8.5 B+ A-      B 

st3 A+ C+ 79 85 9 B+ A-      B+ 

st4 A+ B- 80 87 9.5 A- A      B+ 

st5 A+ B 82 88 10 A- A      A- 

st6 A+ B+ 84 90 11 A- A      A- 

st7 A+ A- 85 92 11 A A+      A 

st8 A+ A 88 95 12 A A+      A 

st9 A C- 73 76 7.5 B- B      B- 

st10 A C 75 78 8 B B+      B 

st11 A C+ 76 79 8.5 B B+      B 

st12 A B- 78 81 9 B+ A-      B+ 

st13 A B 80 83 9.5 B+ A-      B+ 

st14 A B+ 81 84 10 A- A-      A- 

st15 A A- 83 87 11 A- A      A- 

st16 A- C- 70 74 7 B- B-      B- 

st17 A- C 72 75 7.5 B- B      B- 

st18 A- C+ 74 77 8 B- B      B 

st19 A- B- 75 79 8.5 B B+      B 

st20 A- B 77 80 9 B+ A-      B+ 

st21 A- B+ 79 82 9.5 B+ A-      B+ 

st22 B+ C- 69 71 6.5 C+ B-      C+ 

st23 B+ C 71 73 7 B- B-      B- 

st24 B+ C+ 72 74 7.5 B- B      B- 

st25 B+ B- 74 76 8 B- B      B 

st26 B+ B 76 78 8.5 B B+      B 

st27 B C- 67 70 6 C+ C+      C+ 

st28 B C 69 71 6.5 C+ B-      C+ 

st29 B C+ 71 73 7 B- B-      B- 

st30 B B- 72 75 7.5 B- B-      B- 

st31 B- C- 65 68 5.5 C C+      C 

st32 B- C 67 70 6 C+ C+      C+ 

st33 B- C+ 69 71 6.5 C+ B-      C+ 

st34 C+ C- 64 66 5 C- C      C 

st35 C+ C 66 68 5.5 C C+      C 

st36 C C- 62 65 4.5 C- C      C- 
 

FUZZINESS AND BIAS  

Let us consider an engineering candidate selection process 
involving national and international students. If SG is the scale 
locally employed for grading students, and SG, Si are two 
scales used for evaluation (SG to be used for students having 
grades only from the school where the selection takes place, 
and Si to be used when students also have grades assigned on 
other numerical scales), the candidates can be grouped in 
categories [11]: 
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C1 - candidates having grades only from the school where the 
selection takes place (scale SG) and evaluated on SG; 
C2 - candidates having grades from the school where the 
selection takes place as well as from other scales equivalent to 
SG and evaluated on Si; 
C3 - candidates having grades from the school where the 
selection takes place (non-equivalent to Si) as well as from 
other scales equivalent to Si and evaluated on Si; 
C4 - candidates having grades from the school where the 
selection takes place (scale SG non-equivalent to Si) as well as 
from other scales nonequivalent to Si and evaluated on Si. 
In agreement with our analysis, a few remarks may be of 
interest: 
• Students belonging to C1 will always be correctly 

assessed in terms of their rank of arithmetic mean as the 
scale chosen for assessment is the one used by the school 
where they belong. 

• Converting all the grades of the students in group C2 to 
scale Si leaves the rank of arithmetic mean unchanged as 
the grades of these students were obtained on scales 
equivalent to Si; thus their rank assessment is consistent 
with the hierarchic ranks to which the school organizing 
the selection adheres. 

• For students in C3 the conversion of grades from other 
scales (except SG) to scale Si is consistent with the rank 
assessment on those scales as they are equivalent to Si. 
Although calculating the rank of the overall set of 
(converted) grades on Si is appropriate with respect to 
grades obtained on scales other than SG (all equivalent to 
Si), it is not appropriate from the point of view of the 
hierarchic ranks to which the school making the selection 
adheres. As Si is non-equivalent to SG, different hierarchic 
ranks of the arithmetic mean are associated with it and 
therefore with students belonging to C1 and C2. 
Converting grades from SG to Si may also cause fuzziness 
of the overall assessed rank (see examples of grade 
conversion from Sb to Sh). 

• For students belonging to C4 the conversion of all the 
grades from scales non-equivalent to Si is not appropriate 
as it is not consistent with rank assessment on SG, to 
which the school adheres. Also, converting grades to Si 
may cause fuzziness of the overall assessed rank as 
discussed for category C3 students. 

• If only category C1 and C2 are involved in the selection 
process, the rank identification is always correct, as 
argued above, and thus the decisions made are always 
true. 

• If category C3 or C4 students are also involved in the 
selection process, rank identification may be unique or 
fuzzy; as the assessment of rank is obtained on scale Si 
(non-equivalent to SG) for category C3 or C4 students, the 
decision-making process is altered by the fact that 
different categories of students are assessed on scales with 
different hierarchical values: category C3 and C4 students 
are assessed on Si while category C1 and C2 are assessed 
(essentially) on SG. Accordingly, the decisions made in 
such cases may be true, false or fuzzy; if SG and Si are 

strongly biased in terms of averaging properties (see the 
example of Sb, which is strongly biased to provide lower 
ranks of arithmetic mean with respect to Sh for the same 
l.g. set.), this may result in consistently accepting or 
rejecting candidates from a particular school due to its 
grading scale [11] rather than to student achievement. 

GRADING AND EQUIVALENT SCALES  

Grading tests may consist in ranking student work on a 
particular numerical scale. Many times grades are not directly 
obtained on a scale but rather a raw score is processed for such 
purpose. Let us consider the following numerical scale Se = {A 
= {90, . . ., 100}, B = {80, . . ., 89}, C = {70, . . ., 79}}. If for a 
small class the results of the tests produced a set of raw scores 
(out of 100 or percentage) sraw = {98, 72, 70, 60, 51, 8} 
numerical grades need to be assigned on Se. The fact that 
students did not necessarily obtain high scores does not mean 
that the entire class deserves low grades but rather reflects the 
level of difficulty of the test with respect to that class 
(compare a regular mathematics test to a test given at an 
international competition, for instance). Therefore, even scores 
of 50 or 48 may indicate a significant level of student 
achievement, depending on the nature of the test. Assigning 
numerical values to be used for further processing (averaging) 
is an important and non-trivial task. Given that the instructor is 
able to assess what raw score range should correspond to A, B, 
or C, the issue of converting the effective raw score set to the 
numerical assignments of A, B, C, etc., arises. If the instructor 
assesses that the l.g. and raw score ranges are related 
according to l.g. categories according to {A = {80, 81, . . ., 
100}, B = {60, . . ., 79}, C = {45, . . ., 59}}, what would be a 
fair correspondence to the numerical values of Se scale? From 
the point of view of the analysis of equivalent scales presented 
in this paper, we propose that a fair correspondence would be 
obtained by making the l.g. subscales equivalent (numerical 
values for the A range on Se scale should be obtained by a 
linear transformation of the ‘raw score’ range for A, and so on 
for the rest of l.g.s.). With such a transformation, the 
numerical grades obtained from sraw = {98, 72, 70, 60, 51, 48} 

is se = { 99, 86, 85, 80, 74, 72 e} . The procedure is consistent 

in ordering students within the same l.g. category and in 
preserving the arithmetic mean subranks. We tested this 
grading/ scaling method on different engineering and non-
engineering students and on variable class-sizes, always with 
an excellent feedback from students.  

The curving technique was applied, for instance, to 
ETE264, ETE366, and ETE470, all electrical engineering 
courses. The class was informed that the graded tests would 
include two numbers: the raw score, obtained through a strict 
marking procedure, and another one, representing the grade on 
the chosen grading scale. The curved grades spanned the 
regular range of A, B, C, D, and E l.g.s.  At the end of the 
course the students were asked to respond anonymously to a 
questionnaire and to give their sincere opinion regarding the 
fairness of the evaluation of their course performance. 
Although no student can be pleased with low grades, there was 
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almost unanimous agreement that the evaluation of 
performance in the course was fair; only in a few cases 
students considered that they probably obtained a better mark 
than expected. The raw score associated with their grades 
likely made them think that they may have deserved a lower 
grade. The reaction of these few students proves that some of 
the students will show inertia to accepting other hierarchic 
values than those they were used to. It is worth noting that the 
instructor who employs this technique may appear to students 
as both a tough and a generous marker (because of the scaling 
procedure). The curving method can also affect the type of 
questions used in tests. In a highly heterogeneous class, 
difficult questions will crash the weaker part of the class, 
while too easy questions will not differentiate among students 
in the upper levels of the class. The scaling method presented 
here allows for the use of test questions with an overall higher 
difficulty level than it would be possible without any scaling, 
without compromising the correct and consistent ranking of 
students. Such an opportunity obviously promotes higher 
engineering education standards. In our practice, we noticed 
that the technique particularly engaged more students in 
continuously improving their engineering skills and 
understanding of concepts, while it also enhanced class 
interest and competition at all levels. 

Although the grade curving procedure described in this 
section may appear cumbersome to apply in practice, our 
experience shows that it becomes a trivial operation once a 
spreadsheet is set for this purpose.  

CONCLUSIONS 

Cross-comparison of student achievement as reflected in 
grades is often performed in practice employing weighted 
averages and grade conversion. When two or more non-
equivalent scales are involved in the calculation of the 
arithmetic mean rank, the rank of the concatenated set of 
grades may be lower than those of each of its independent 
grade sets (on their original scale). We called this 
phenomenon “absurd” averaging and explained the result. We 
do not claim to have found the ultimate solution to assessing 
overall student achievement irrespective of the grading scale 
used. Nor do we argue for the appropriateness of using the 
arithmetic mean for assessing overall student achievement. 
However, we do argue that when the arithmetic mean is used 
as such measure (with all its inherent problems related to the 
meaning of the result) the procedure is consistent only for 
equivalent scales (as defined in the paper). Also, when 
converting grades for the purpose of finding an overall 
parameter for student achievement reflected by sets of grades 
obtained on non-equivalent scales, for the sake of consistency, 
the conversion should be performed to the scale used by the 
student’s current school or department. We showed how the 
equivalent scale analysis can be applied to regular grading 
procedures when raw scores are involved. Besides the 
theoretical aspect of this approach, our practice has 
consistently been paralleled by excellent student response to 
this new scaling/ curving procedure. The technique appears 
rewarding from the students’ point of view and it is 

conceptually consistent with the analysis presented in this 
paper. In our opinion, the procedure is likely to be most 
efficient in allowing for enhanced teaching and evaluation 
standards, particularly in engineering courses, where exercises 
with higher levels of difficulty can be included in tests without 
affecting the overall efficiency of the evaluation.  Although 
we have not solved the problem of overall student assessment, 
we provide insights based on mathematical grounds and 
suggest procedures meant to improve this process. 
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