

A Pilot Program on Teaching Engineering Design Using Probabilistic Approaches

Yin Chen
John Sharon
Sven Esche, Ph.D.
Constantin Chassapis, Ph.D.
Department of Mechanical Engineering
Stevens Institute of Technology
Hoboken, NJ 07030

Project Overview

- Current undergraduate ME curriculum
 - Idealistic engineering design
 - No consideration of uncertainty and risk in decision making
- Project goals of strategic initiative
 - Establish an information-based approach to engineering design
 - Prompt the development, implementation and assessment of novel approaches in engineering design education
 - Demonstrate that concepts of uncertainty, decision theory and optimization can be taught effectively
- Implementation
 - ME322 Engineering Design VI: theoretical concepts implemented as part of comprehensive group design project
 - Propagation of approach to entire engineering curriculum

Importance of Decision Making under Uncertainty

- Decision making
 - Widely used in industry
 - Often a difficult process
 - Large impact on project success
- Standardized method
 - Allows systematic design approach
 - Creates a common language between engineers and business managers
 - Provides general guidelines for any decisions

Decision Making Process

- Foundation
 - Probability theory
 - Common statistical distributions
 - Modeling methods (e.g. Monte Carlo method)
- Steps of decision making process
 - Define design objectives
 - Generate options (design alternatives)
 - Specify evaluation measures
 - Determine value scales for evaluation measures
 - Grade options and select best
 - Test decision using sensitivity analysis

Objectives and Options

- Determine project objectives
 - Goals, technical, organizational and budgetary constraints, limitations
- Generate option space
- Reduce available option space to a subset of options
- Define relevant parameters and corresponding variations for each option

Example: Objective

- Design a triangular truss to support 24,000 N
- Design options:

OPTION	N 1		2		3		
Fill Type	Hollow		Hol	Hollow		Hollow	
Radius [m] Outer/Inner	0.03	0.015	0.04	0.025	0.05	0.035	
Radial Deviation [m]	0.005	0.005	0.005	0.005	0.005	0.005	
Angle [deg]	65		62.5		60		
Angular Deviation [deg]	0.5		0	.5	0.5		

Evaluation Measures

- Definition: a numerical quantity to grade some design aspect or parameter
- Types
 - Deterministic
 - Value expressed as single number
 - Probabilistic
 - Value expressed as range/distribution
 - Requires risk inclination number ()

Evaluation measure

Example: Evaluation Measures

- Cost (deterministic)
- Percent failure (deterministic)
- Critical load (probabilistic)

Value Scales

- Select a range for each evaluation measure
- Determine a score for each evaluation measure of each option
- Deterministic Evaluation Measures (EMs) for Example:

DETERMINISTIC EMs	HOLLOW #1	HOLLOW #2	HOLLOW #3	HIGH	LOW
Cost [\$]	384.14	542.65	682.29	1000	350
Percent Failure	16.97	3.69	3.52	20	1

Example: Probabilistic Evaluation Measure

Percent failure
 as modeled by
 Monte Carlo
 method
 using MATLAB:
 (cumulative
 distribution of
 critical load)

Option Grades

Normalize option scores

$$f(score) = \frac{score - Low}{High - Low} \qquad f(score) = \frac{1 - exp[-(score - Low)/]}{1 - exp[-(High - Low)/]}$$

$$f(score) = \frac{High - score}{High - Low} \qquad f(score) = \frac{1 - exp[-(High - score)/]}{1 - exp[-(High - Low)/]}$$

- Determine weights for each EM
- Calculate final grade for each option

$$FinalGrade = \sum_{i=1}^{k} Weight_{i} \times Grade_{i}$$

Example: Option Grades

MS Excel macros automatically calculate option

grades

	term and the second					
1					5	
2		=	TARGET	CERTAINTY EQUIVALENT	RHO	OPTION GRADE
3	Hollow #1	MU.	3	62121	1475000	0.026569104
4		HIGH	3.50E+05			
5		LOW	55000	2		7
6	î î		i i	2.000		
7		SIGMA		45669	800000	0.967880179
8		HIGH 🥈	2.00E+05			
9		LOW	40000			
10						
11	Hollow #2	MU	î i	1.59E+05	1475000	0.376480928
12	î î	HIGH	350000			
13		LOW	55000		7	
14						
15		SIGMA		99348	800000	0.652190272
16		HIGH	200000			
17		LOW	40000			
18						
19	Hollow #3	MU	Ĭ J	3.25E+05	1475000	0.922544911
20		HIGH	350000			
21		LOW	55000			
22		5				
23		SIGMA		1.85E+05	800000	0.105721135
24		HIGH	200000			
25	î d	LOW	40000			
20	(2) S	- 3	§ 5		7	

Example: Weights

weight_i =
$$\frac{(K - r_i + 1)^z}{\sum_{j=1}^{K} (K - r_j + 1)^z}$$

	A	В		
1	Evaluation Measure	Weight		
2	Cost	0.3408		
3	Critical Load	0.2583		
4	Sigma of Critical Load	0		
5	Percent Failure	0.4009		
200				

Example: Final Grade

А	В	C	D	E	F	G	Н
Evaluation Measure	Weight	Hollow #1	Weighted Grade	Hollow #2	Weighted Grade	Hollow #3	Weighted Grade
Cost	0.3408	0.932092	0.317693328	0.703615	0.239819502	0.488785	0.166596817
Critical Load	0.2583	0.026569	0.006863001	0.376481	0.097247882	0.922545	0.238300355
Sigma of Critical Load	0	0.96788	0	0.65219	0	0.105721	0
Percent Failure	0.4009	0.159474	0.063925584	0.858421	0.344101079	0.867368	0.347687663
Final Grade		2 9 3 1	0.388481913		0.681168464		0.752584835
8							

Sensitivity Analysis

 Check if selected weights allow for a conclusive decision

• Example: For 0.35 each EM, vary 0.36 0.18 0.2 0.22 0.24 0.26 weight by 0.1 in each direction

Current Status and Outlook

- Materials prepared so far:
 - Software package (MATLAB, MS Excel)
 - User manuals
 - Lecture notes
- Limited version of approach to be piloted and assessed in undergraduate course in Spring 2005

Acknowledgment

This project is sponsored by the National Science Foundation under Grant No. 0234016.