

A Multi-scale Chemical Engineering Product Design: Design of a Transdermal Delivery System

Joseph A. Shaeiwitz
Richard Turton
Chemical Engineering Department
West Virginia University
P.O. Box 6102
Morgantown, WV 26506 -6102
304-293-2111 ext. 2410
jashaeiwitz@mail.wvu.edu

Outline

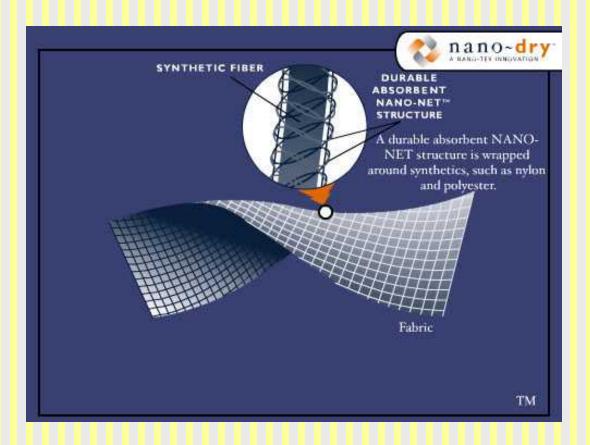
- New Directions for CHE Education
- Project Goals (instructor view)
 - Product Design
 - Multi-Scale Design
- Project Goals (student view)
- Student-generated Results
- Assessment
- Conclusions

Outline

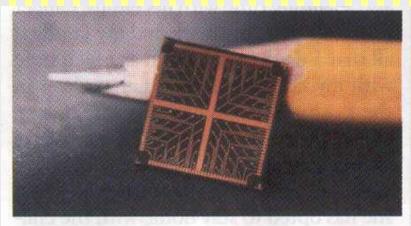
- New Directions for CHE Education
- Project Goals (instructor view)
 - Product Design
 - Multi-Scale Design
- Project Goals (student view)
- Student-generated Results
- Assessment
- Conclusions

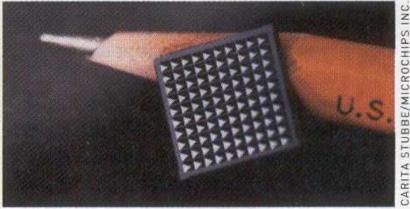
New Directions for CHE Education

- Biology as enabling science
- Product design
- Multi-scale analysis and design


Traditional Chemical Engineering

source: AIChE


The Future of Chemical Engineering



http://www.nanotechbook.com/resources.php

The Future of Chemical Engineering

DRUGS-ON-A-CHIP Front of a controlled-release microchip (left), based on a concept developed in Langer's lab, shows an array of 100 gold reservoir caps and their electrodes. The back of the chip (right) shows the 150-nL reservoirs that potentially could release doses of drug or a combination of drugs.

Source: C&E News, February 18, 2002

Outline

- New Directions for CHE Education
- Project Goals (instructor view)
 - Product Design
 - Multi-Scale Design
- Project Goals (student view)
- Student-generated Results
- Assessment
- Conclusions

Project Goals (instructor view)

- Product design
 - Need, ideas, screening, manufacturing
- Multi-scale design
 - From molecular to macroscopic
- Life sciences orientation
- Lifelong learning, teamwork, communication

Project Goals (student view)

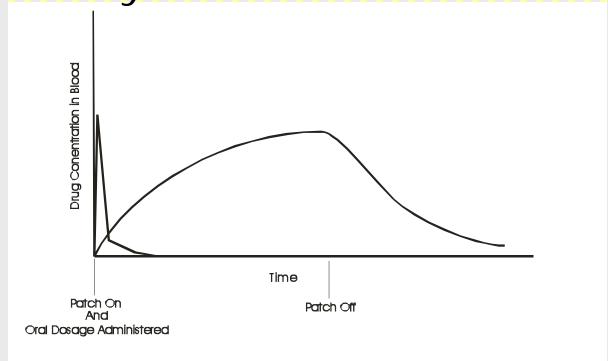
- Identify candidate drugs for use in transdermal systems
 - Properties of such drugs (molecular weight, solubility, concentration in blood, desired dosage)
- Ideas for such drugs
 - Birth control, motion sickness, blood pressure control, nicotine withdrawal
- Identify suitable markets
 - Developing economy
 - Professional, educated women

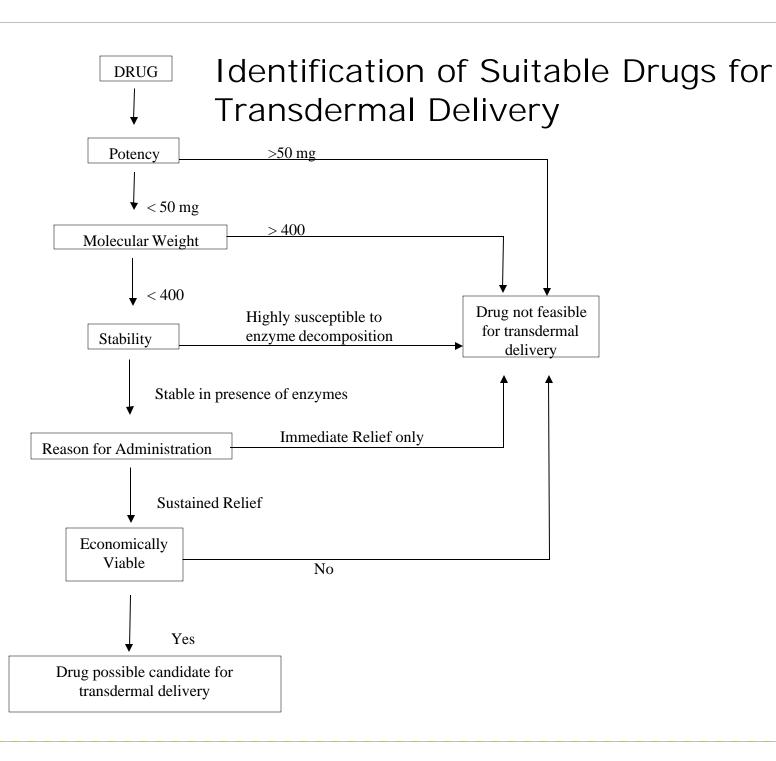
Project Goals (student view) [continued]

- Screening of alternatives
- Design of birth control patch
 - Components of patch
 - Adhesive, enhancers, excipients, liners
 - Manufacture of patch
 - Mixing processes
 - Coating processes
 - Cutting, packaging, shipping, warehouse facilities

Project Goals (student view) [continued]

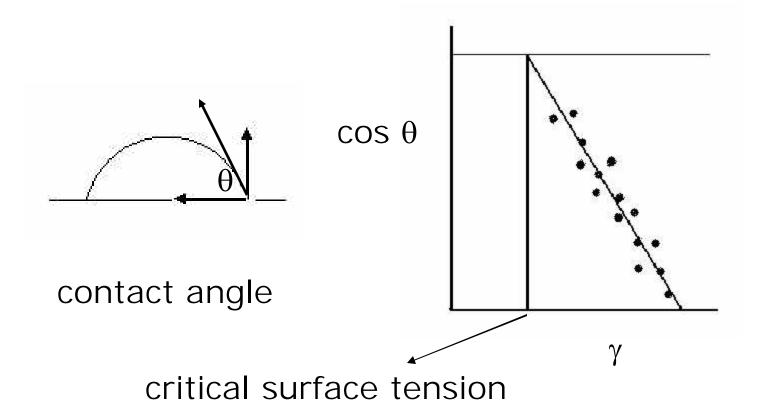
- Technical understanding of drug delivery process
 - Transdermal transport phenomena (transport through multiple immiscible layers)
- Pharmacokinetics
 - Compartment models, fitting published data
- Demonstration experiment
 - Diffusion cell


Outline

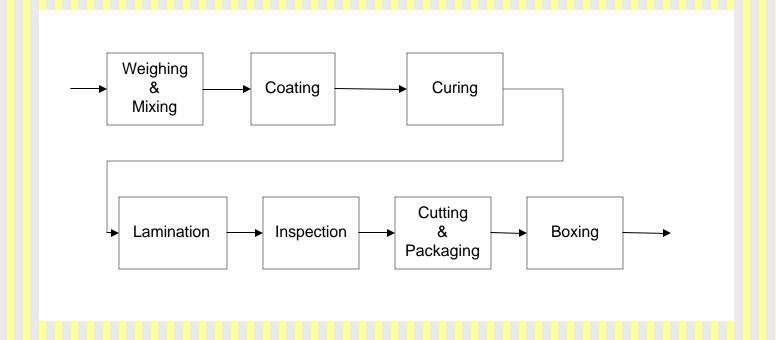

- New Directions for CHE Education
- Project Goals (instructor view)
 - Product Design
 - Multi-Scale Design
- Project Goals (student view)
- Student-generated Results
- Assessment
- Conclusions

Student-Generated Results

Learned about transdermal delivery

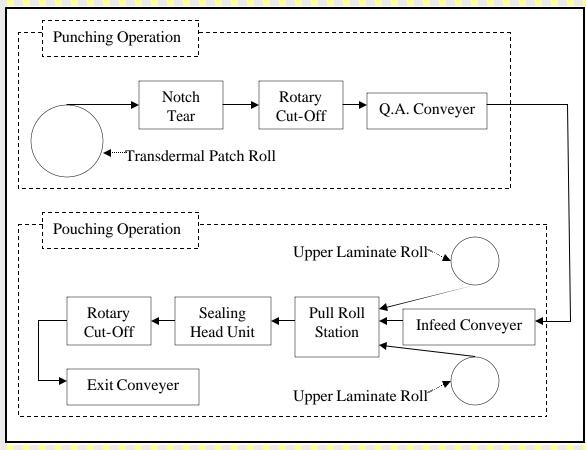


- Chose drug
 - Norelgestromin/ethinyl estradiol (similar to Ortho-Evra®)
- Chose excipient oleic acid
- Chose enhancer propylene glycol monolaurate
- Chose adhesive polyisobutylene (and learned about adhesion)



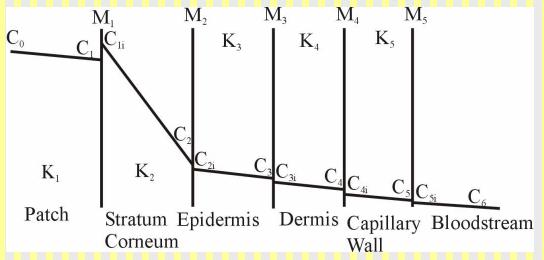
Adhesion

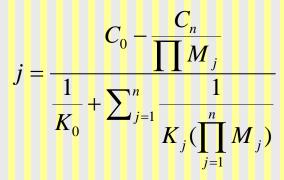
Manufacturing process

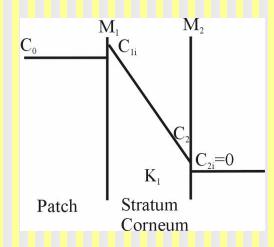

Production process

http://www.mathisag.com/en/

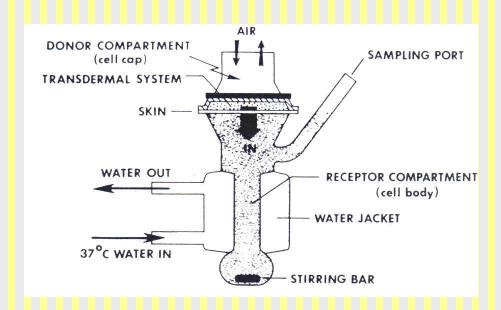
Punching and pouching



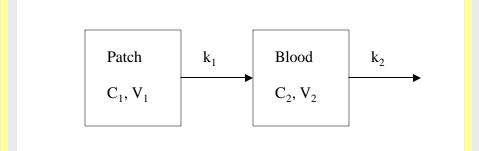



- Cartoning
- Solvent recovery
- Personnel
- Scheduling
- Economic analysis
 - \$0.30/patch to manufacture
 - Current price (non-generic)\$11.00/patch

Diffusion through skin



$$j = C_0 K_1 M_1$$


Diffusion cell experiment

Apparatus used to perform *in vitro* experiments to determine the flux of a drug through skin, from Kydonieus, A. F. and B. Berner, *Transdermal Delivery of Drugs*, Volume II (Boca Raton, FL:CRC Press, 1987).

Pharmacokinetics

$$\frac{dC_1}{dt} = \frac{-k_1C_1}{V_1}$$

$$\frac{dC_{2}}{dt} = \frac{k_{1}C_{1} - k_{2}C_{2}}{V_{2}}$$

Pharmacokinetics

Predicted concentration of norelgestromin in blood. (represents experimental values collected from human samples, dotted line represents reference range for which drug is effective, from OrthoEvra® Full Prescribing Information. Ortho-McNeil Pharmaceuticals. Raritan, New Jersey. May 2003. A represents experimental values collected from human samples for tablet administration, from Kydonieus, A. F. and B. Berner, *Transdermal Delivery of Drugs*, Volume II (Boca Raton, FL:CRC Press, 1987).)

Outline

- New Directions for CHE Education
- Project Goals (instructor view)
 - Product Design
 - Multi-Scale Design
- Project Goals (student view)
- Student-generated Results
- Assessment
- Conclusions

Assessment

- Students
 - Feedback on evaluation of instruction
 - Feedback on surveys/interviews
- Faculty
 - Use of rubric

Assessment by Students

Tackling the non -traditional problem posed in the large group project enhanced my confidence in solving new problems.

4.90/5.00

Assessment by Students

■ I feel that my experience with the group design taught me the importance and the need for continuously learning new material.

4.17/5.00

Assessment by Faculty

Design of equipment, understand interrelationship between	3
equipment in process	
Apply chemistry, math, physics, engineering science	3.5
Resolve complex problem into components	3
Apply economic, physical constraints and optimization methods to	3
obtain solution	
Use of computer-based and other information systems	3
Demonstrate ability to learn new material not taught in class	4
Demonstrate ability to function in assigned role	3
Demonstration of ethical behavior	3
Demonstrate understanding of societal impact and need for	3
assigned design	

Outline

- New Directions for CHE Education
- Project Goals (instructor view)
 - Product Design
 - Multi-Scale Design
- Project Goals (student view)
- Student-generated Results
- Assessment
- Conclusions

Conclusion

- Project was successful
- Students met or exceeded all expectations
- Can include product design, life sciences, multi-scale design in traditional design class

Web Site

http://www.che.cemr.wvu.edu/publications/projects/index.php