Evaluating a B.S. Program in Mechanical Engineering – Six Years of Surveys

R.W. Mayne, A.K. Patra,
R.C Wetherhold and K.E. Lewis
Dept. of Mechanical and Aerospace Engineering
University at Buffalo
State University of New York

Quantitative Surveys for Program Improvement

- Based on an agreed definition of knowledge and skill goals
- Quantitative surveys measure our delivery of knowledge and skills
- Further clarification from focus groups and qualitative surveys
- Knowledge and skill goals are subject to possible revision

Specific Knowledge Topics

- Mathematics/sciences
- Mechanics
- Materials science
- Thermodynamics
- Heat transfer
- Fluid mechanics
- System dynamics

- Machines/mechanisms
- Design
- Manufacturing
- Numerical computations
- Exposure to practice
- Professionalism, ethics, society, environment

Specific Skills

- Product design and realization
- Math modeling
- CAD modeling and tools
- Sound engineering judgement

- Choose and evaluate materials
- Choose and evaluate manufacturing processes
- Communication skills
- Ability to work in teams

The Survey

- Qualitative information
- Emphasis on knowledge and skills rated by
 - Career Importance (Scale of 1- 5)
 - Importance in UB Program Coverage (Scale of 1-5)
- Percent "Short Fall" combines the two importance measures:

100 X Career Importance - UB Importance
UB Importance

Survey History

Surveys before program revision

- Graduating seniors
 - Classes of 1999 and 2000
- Alumni (conducted in 2000)
 - Classes of 1994 1998

Continuing surveys since revision

- Graduating seniors
 - Classes of 2001, 2002, 2003 and 2004

Initial Survey Conclusions (in 2000)

Weaknesses in

- exposure to practice, manufacturing, design, prof/ethics/env/society
- More focus on skills, especially
 - CAD, communications skills,
 manufacturing processes, engineering
 judgement
- Graduating seniors and alumni in general agreement

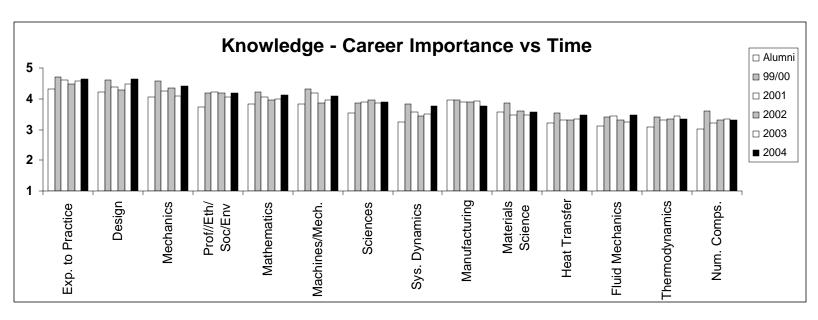
Targeted Program Additions

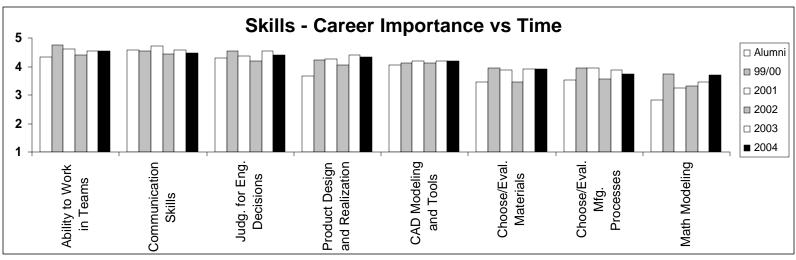
(effective in 2001)

- Introduction to ME Practice (MAE 277)
 - Reverse engineering, design projects and communication skills: for sophomores
- Design in a CAD Environment (MAE 377)
 - Mechanical design projects using AutoCad and ProE: for juniors
- Manufacturing Processes (MAE 364)
 - A traditional course in manufacturing
- **Design Processes** (MAE 451)
 - Original course expanded from 2 to 3 credits
- **Applied Math for MEs** (MAE 376)
 - Specifically for ABET requirements in linear algebra and statistics

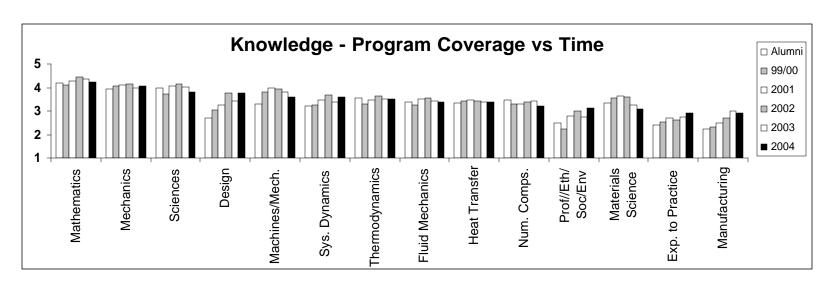
BSME Program

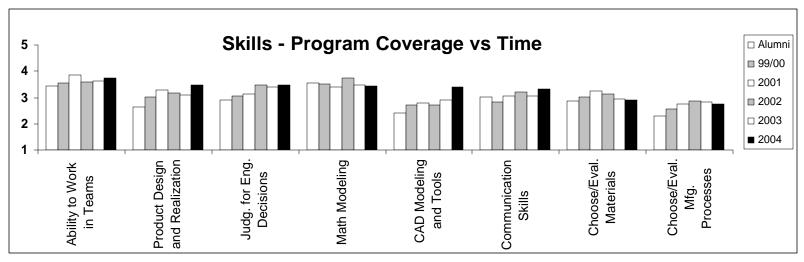
(after revision)

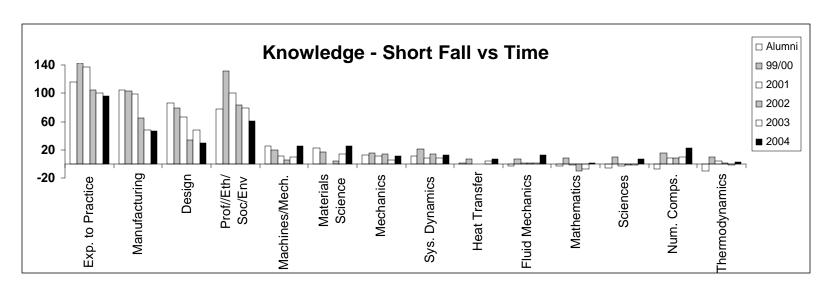

- Math, Physics, Chemistry (8 courses)
- Engineering Fundamentals (7 courses)
 - Drawing, Programming,
 Thermo, Statics,
 Dynamics, Strength, EE
 Concepts
- **Design/Practice** (4 courses)
 - ME Practice, Design with
 CAD, Design Processes,
 Capstone Design

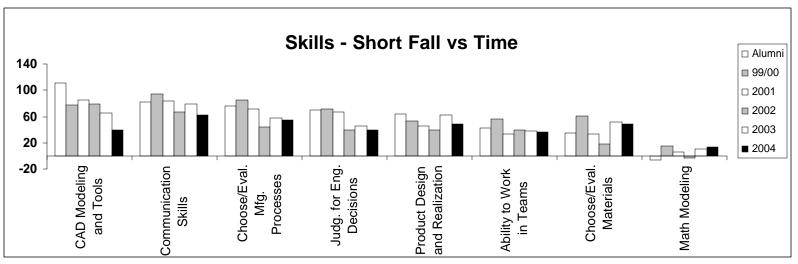

- Mechanical Engineering Basics (10 courses)
 - Instrumentation, Fluids, Materials,
 ME Math, Dynamic Systems, Heat
 Transfer, Machine Design,
 Manufacturing
- **Laboratories** (4 courses)
 - Instrumentation, Materials,Systems, Fluids/Heat
- **Electives** (5 courses)
 - four technical, one applied math
- General education

Year by Year Survey Results


- Career Importance surveys show consistency from year to year
- UB Importance surveys reflect the targeted program changes
- Short Fall results since revision show improved
 - Design, manufacturing, CAD
 - Practice, professionalism, judgement
- Short Fall results since revision show little effect on traditional technical and science topics


Career Importance Plots




Importance in UB Program Coverage

Short Fall

Closing Comments

- Our current program emphasis is on further improving
 - exposure to practice, professionalism,
 communications
- Second five-year alumni survey planned for 2005 (classes of 1999-2003)
- The quantitative survey approach has been a valuable tool for understanding student needs and overcoming faculty inertia