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Abstract — Engineering design represents a process of decision making under conditio  ns of uncertainty and risk, but
today’ s undergraduate engineering curriculararely include any principlesof dec  ision theory. Even though value theoryis a
crucial component of the decision making process, these subjects are typically heavily underrepresen  ted in engineering
curriculaand often treated incorrectly by the engineering community at large. Probability theory, which establishesthebasic
mathematical tools needed for the proper assessment of uncertaintyand  risk, isoften not presentedin  an engi neering context
such as design. This situation calls for a revolutionary shift in design education where practical examples of real design
casesare used toillustrate the application of sound scientific principles.

This paper describes our progressina pilot program that aims to prompt a strategic initiative for the development,
implementation and assessment of stochastic modeling and simulation based approachesin engineering design education at
Sevensingtitute of Technology (ST). Inpreparationfor  afeasihility studyin acourse takeninthejunior year by mechanical
engineers, we have constructed a series of design scenarios in which to implement stochastic methods. Lecture materials,
MATLAB MS Excel analysis modules as well as student assignments have been prepared. The aforementioned  will be
introduced into the course asa pilotinthe spring of 2005. Upon successful comple tion of this pilot project, the approach will
beimplemented in the capstone design sequence in the mechanical enginee  ring dep artment.

Index Terms — Evaluation m easures, Monte Carlo simulation, multi attribute d ecision making, probabilistic design
approach, sensitivitya nalysis

INTRODUCTION
Decision making is an important part of any design process [1], [2]. It is vital for future engineers to have a sound foundation
in the fundamentals of this concept. Therefore, it is important to incorporate the tools of statistics and probability into
engineering design coursesto enhance theundergraduates exposure to decision making and decision making under
uncertainty [5], [6].

Even for experienced management professionals, decision making isoften an important and difficult process. As
students enter the workforce, some as project management personnel, they are faced with making decisions that can affect
themselves, their departments, and even their companies. Not only is it important for an engineer or manager to make the
correct decision, but it is also important that he can defend his decision. Management curricula have included decision
making methods for decades [2]. Although none of the methods guarantee the best resultsin all cases, they are, nonetheless,
efficient and helpful guidelines. All decision making methods assume that as one becomes more familiar with a subject, one’s
decision making skillswith regard to that subject naturally improve. These methods are merely tools and the ultimate result
till depends on the decision maker.

Engineers, on the other hand, are rarely exposed to this topic, even though engineering decisions often involve safety
issues that may be much more important than business decisions. Not only would the addition of decision making methods
into the engineering curriculum show students how to systematically make a decision, it would also help to create a common
language between business managers and engineers. Engineers would be able to explain and defend their decisions in a
guantitative way that managers can understand.

For the pilot program, only a limited version of the decision making method will be taught. It will, however, be suitable
for handling undergraduate design projects. As with any decision making method, it will help to break down complicated,
multi attribute problems into smaller, more manageable ones. Since this will be the students’ first exposure to the concept,
and it will be embedded in an engineering design class, the scope will be narrower than it usually is in a management
scenario. Concepts of probability, which are helpful in modeling decisions involving uncertainty, tolerances, failure rates and
other important engineering topics, will also be included.
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DECISION M AKING PROCESS- M ETHOD

The students will first be introduced to probability through a general overview of commonly used distributions such as:
e Normal: used for large samples

e Uniform: used to inhibit round off errors

e  Poisson: the limiting case of the binomial distribution

e Exponential: used for modeling events that randomly occur over time

In addition, the students will be introduced to the concepts of modeling and evaluation of multiple occurrences of an
event in order to study its behavior tendencies and trends through exposure to the Monte Carlo method. A’ MATLAB
program that incorporates these conceptsand functionswill then be utilized as an applied model for hands on exploration.
This program enables students to create probabilistic models of uncertainties in their design parameters. A sample output of
this program can be seen in the illustrative example later in this paper.

In essence, decision making is a structured, quantitative approach that consists of the following points, all of which are
explained below.

o Defining objectives and generating options

e  Specifying evaluation measures

e Determining value scales

e Grading the options

e Testing the decision using sensitivity analysis

We have prepared a guide and software package that will be distributed to the students. It simplifies the complex, multi
attribute decision making process and sets rigid guidelines for the students to follow. This approach has been implemented
into a series of automated Microsoft Excel macros. These macros take the students through defining their evaluation
measures and options to finding the optimal alternative. These macros are further illustrated later in this paper.

The following five stages provide a structure for students to use as a guide through their decision making process.

Stage |: Design Stage

The design stage is comprised of three steps. The first step is to determine the objectives of the project. In addition, one must
incorporate any constraints which may limit the design options. A design option is a specific way to achieve the objectives.
All possible design options form the option space. In the second step, one must determine a set of options from the available
option space. Lastly, relevant parameters and variations for each option in the set must be specified.

Stage | I: Evaluation Measures

Based on the design objectives, constraints, their associated parameters and variations, one creates a list of evaluation
measures (EMs), numerical quantities that allow one to grade some aspect of the design. Of the EMs in the list, a test of
importance must then be performed on each. An EM should be eliminated if varying its outcome from best to worst does not
change the outcome of the decision.

There are two types of EMs: probabilistic and deterministic. A probabilistic EM is one whose value is expressed as a
range or distribution, i.e. “length is 2.5+0.01 meters for option X.” A deterministic EM is one whose value is fully expressed
as one number, i.e. “frequency is 0.8 GHz for option Y.” If one has any doubts about the scoring of an EM, one should model
that EM as probabilistic with tolerances that appropriately reflect his uncertainty. Otherwise, the deterministic model is
sufficient. Regardless of the type of EM, one should determine if higher or lower values are more favorable. For probabilistic
EMs, one must also determine his risk inclination.

There are three possible risk inclinations; risk averse, risk neutral, and risk seeking. A risk averse decision maker is one
who, with a higher is better EM, would use a lower value than expected for the decision in order to be “on the safe side.” A
risk neutral decision maker would not alter the nominal value, and arisk seeking decision maker would use a higher value. In
addition, one must also choose the extent of his inclination. Both the inclination and the extent are modeled by the parameter
“p.” For the risk averse case, p is positive. For the risk neutral case, p is infinite. For the risk seeking case, p is negative. As
the absolute value of p approaches zero, the risk inclinations become more extreme. The variable p is used as an input in the
value functions of the EMs as described in Stage 1V.
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Stage |11: Determining Value Scales

For each EM defined in the previous stage, one must set a range for the option scores. An option score is the value attributed
to a particular option for a particular EM. All option scores must fall between the selected “high” and “low” values of the EM.
Any option that does not meet this criterion is disqualified. For a deterministic EM, one then determines the score of each
option. For a probabilistic EM, however, afew more steps must be completed.

For each option in a probabilistic EM, one must produce a distribution for further calculations by either the Monte Carlo
or another statistical method. From the distribution, one can derive the mean, the standard deviation, or any other statistical
parameter that may be helpful for further analysis, depending on the distribution. This information will then be used to set a
certainty equivalent, i.e. a pseudo expected value or score that is adjusted according to one’ srisk inclination.

Stage 1V: Determining Option Grades

For each EM, the scores determined in Stage 111 are scaled or normalized with regard to their range, using the following value
formulae.
score— Low

f(score)= ——— 1

( ) High - Low @)

f(score)zw 2
High— Low

1— exp|- (score— Low)/p]
1-exp[- (High— Low)/ p]

f (score) =

@)

1—exp[- (High - score)/ p]
1-exp[- (High— Low)/ p]

f (score) =

(4)

With deterministic EMs, Eq. (1) is used if higher scores are more favorable. Eg. (2) is usedif lower scores are more
favorable. Similarly, Egs. (3) and (4) are used for probabilistic EMs, Eq. (3) for a preference of higher scores and Eq. (4) for
a preference of lower scores.

Once al option grades are computed for each EM, the next step is to find the final grades of each option. This step
consists of two parts. The first part is to find the weight of each EM and the second part is to combine all the previously
gathered information to compute the final option grade.

The weight of an EM measures its impact on the overall decision. Each weight must have a value between 0 and 1, and
al of the weights must sum to 1. There are three methods for determining weights. arbitrary, direct, and indirect. The
arbitrary method should be used when one is familiar with the decision criteria and feels capable of assigning the weights
without assistance. The direct method should be used when one knows very little about the decision. One does, however,
need to know the ranks of the EMs from most important to least important. Then, aformulais utilized to produce the weights
automatically. The indirect method also requires knowledge of the ranks of the EMs as well as a general feeling for the
relative magnitudes of the weights. Once the ranks are established, the indirect method represents a series of questions to
establish the final weights.

After the weights are determined, Eq. (5) is used to determine the final grade of each option, wherek is the number of
EMs.

k
FinalGrade =) Weight, x Grade, (5)
i=1

Stage V: Sensitivity Analysis

After the final option grades have been determined, it is important to perform a sensitivity analysis. This sensitivity analysis
allows one to determine if one has selected appropriate weight values for the EMs. This analysis is conducted by varying the
weight of one EM from 0 to 1 while adjusting the weights of the other EMs such that their proportions remain the same. The
final grades of each option are computed over the entire range and graphed.

Upon completion, the graphs are analyzed. If the area around the chosen weight contains many line crossings over the
optimal option, then one may choose to adjust the weights to obtain a clearer optimum. This analysis is illustrated at the end
of the next section.
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DECISION M AKING PROCESS— EXAMPLE: TRUSS

To illustrate the decision making process described above, a simple mechanical engineering design problem is solved in this
section. The following example goes through the five decision making stages needed to find the optimal setup for atriangular
truss. A truss was chosen because it fully demonstrates the functions of the process without being overly complicated.

Stage |: Design Stage

The objective is to design a triangular truss from aluminum that can safely support more than 24,000 N. Figure 1 shows a
schematic of the desired design. The option parameters are shown in Table 1.

OPTION 1 2 3
B
Fill Type Hollow Hollow Hollow
Radius (m)  0.03 0.015 0.04 0.025 0.05 0.035
Outer/Inner
Radial 0.005  0.005 0.005  0.005 0.005  0.005
Deviation
(m)
Logd Angle(deg) 65 62.5 60

0 Angular 0.5 0.5 0.5
Deviation
(deg)

Ao 4 e
TABLE 1

OPTION PARAMETERS
FIGURE 1
DESIGN SCHEMATIC

Stage |l: Evaluation Measures (EMs)

For this example, the decision will be made based on threeEMs. cost, critica load, and percent failure. Cost is a
deterministic EM measured in dollars. It is calculated by the price of the material, and lower values are preferred. Critical
load is a probabilistic EM measured in Newtons. It measures the maximum load the truss can support. Higher values are
preferred and for safety, p is set to 5 (i.e. moderately risk averse). Percent failure is a deterministic EM that isa percentage
and dimensionless. It returns the percent of trusses which fail to meet the 24,000 N requirement. It is a measure derived from
Monte Carlo simulations of the performance distribution of each option. Lower values are preferred.

A MS Excel macro has been created to assist the student in setting up theses EMsfor analysis. The basic processis
illustrated schematically in Figure 2.

DETERMINISTIC HOLLOW HOLLOW HOLLOW HIGH LOW

| b o7 pticow ane TpRoin " Trmes

EMS #1 #2 #3
| Cost ($) 384.14 542.65 68229 1000 350
| Husizes i3 aiiz ond L e Percent Failure 16.97 3.69 3.52 20 1
- .l_. — TABLE 2
| Sk inE OPTION SCORES AND RANGE OF DETERMINISTIC EMS
L 1
TR
h 3 L
| Hir 0 Teoem T i i

| Tad

FIGURE 2
FLOWCHART FOR CREATION OF EVALUATION MEASURES
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Stage |11: Determining Value Scales

Option scores are then calculated, and arange for each EM is determined. For the deterministic EMs, all that is required are
the values in Table 2. For the probabilistic EM of critical load, Monte Carlo simulations were performed using MATLAB,
resulting in the distributions shown in Figure 3. 100,000 samples were simulated per option and the relations used for the
calculation are Egs. (6) and (7).

4 4
mx\ry —r
| = o | 6
4 (6)
.. n2xEx|
CrltlcaILoad:T )

Ceflical Losd Disiriiution f Dibien Holow 81 Criicai Load Disirinuticn of Dphion Holow #3

FIGURE 3
CRITICAL LOAD DISTRIBUTION OF EACH OPTION

From these distributions, the certainty equivalent and range were obtained. Figure 4 shows the result of running the EM
creation macro detailed in Figure 2 for the critical load EM. The “TARGET” column shows the ranges of the values for the
mean MU and the standard deviation SIGMA of each option. The certainty equivalent was obtained by using the function
NORMHFT in MATLAB. NORMFIT takes a sample and a confidence level (in this case, 0.95) and returns the possible
values of MU and SIMGA of the population from which the sample was chosen. Since this example wasbased on a risk
averse point of view, the lowest possible MU and the highest possible SSIGMA were chosen as the certainty equivalent. The
numbers in the “RHO” column are the denormalized values of p, calculated from the rangesin column “TARGET.” All white
cells were automatically filled in by the macro. The blues cells were entered manually and the green cells are optional.

A R | D | E |
T 5
3 TARGET |CERTAINTY EQUIVALENT RHO
3 [Hollow #1 MU B2121] 1475000
4 HIGH |3.60E+05
3 LOWY SE00D)
&
7 SIGMA 45REG| 800000
g HIGH |Z.00E+05
9 LOWY 40000
10
11 [Hollow #2 [MU 1 5IE+05] 1475000
12 HIGH 350000
13 LOWY 55000
L
15 SIGMA 95348) 800000
16 HIGH 200000
17 LOWY 40000
18
19 [Hollow #3 MU 3.25E+05] 1475000
20 HIGH 350000
21 LOWY 55000
2
23 SIGMA 1.B5E+05| A00000
24 HIGH 200000
25 LOWY 40000
FIGURE 4

PROBABILISTICEM CRITICAL LOAD OPTION SCORESAND VALUES
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Stage | V: Determining Option Grades

After the necessary information has been entered, the Excel macro automatically computes the option grades. The results are
shown in Figure 5.

1 5
A B B | D | E | F I ] TARGET |CERTAINTY EQUIVALENT RHO OPTION GRADE
] 3 Hollow #1 [0 E2121] 1475000 026569104
L = " i HIGH | 3.50E405
2| SCORE GRADE 5 LOW 55000
1 Hollow #1 lEEREE 0.7501 sl UL ? SIGMA GEBEH| 800000 0967880179
4 [Hollow 72| 84288 07038 LOwW 30 l o
5 |Hollow #3] B82.29] 04558 ] LOwW 40000
== 10
= 11 Hollow %2 M T BOE+IG] 1475000 1376400928
12 HIGH | 3a0000
13 LOW 55000
14
15 SIGMA 99340|_bo000n 0 EE2180272
. - 1B HIGH | 200000
L i < 17 LOW 40000
2| SCORE GRADE 18
T 18 Hollow #3[WJ FZ5E+08] 1475000 0922544911
3 [Follow #1|_16.87] 011505 HIGH 20 | GEITES O
4 [Hollow #2 3E5) 05554 LOW 1 21 LOW 55000
T »
= ;HD”DW#3 g 05674 23 SIGMA T/BARE 5| A00000 0105721135
Rl 24 HIGH | 200000
5 LOW 40000
FIGURES

TOP: SCORESAND GRADESFOR COST. BOTTOM: SCORESAND GRADES FOR PERCENT FAILURE. RIGHT: SCORESAND GRADESFOR CRITICAL LOAD.

The weights of each EM were determined using the rank exponent method (direct) according to[8], where K isthe
number of EMs, r; is the rank of theith EM, and z is the dispersion factor set by the student.

weight, =81+ Y (®)
> (K—r; +1f
=

In this example, the dispersion factor z was set to 0.4. The dispersion factor is a parameter that determines how much the
weights differ from the most important to the least important. The higher the dispersion factor is, the bigger is the difference
between the weights. This weight method, along with others, has been implemented as a macro in Excel as well. The basic
process is illustrated schematically in the Figure 6. The method used in this example is highlighted, and the results are shown
inFigure 7.

~aqc Cirdar ot RV n I..... | N a8 B
1 |Evaluation Measure  |Weight
. 2 [Cost 03408
Tzeo. Mebod® 3 [Critical Load 0.2683
4 |Sigma of Critical Load a
e M & |Percent Failure 04009
h x =]
Felrot 2Azthad ks G
FIGURE 7
RESULTANT WEIGHTSFROM EXCEL MACRO
r L J r r h
Reie Earik sk Rank List of
S Crior Ezpoticit Ezeiprazal Rt ¢
Teer Zuluz
¥ 1
| =N
FIGURE 6

WEIGHT CALCULATION FLOWCHART
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Next, the final grade of each option is calculated as per Eg. 5 using a third Excel macro, whose process and results are
shown in Figure 8 and Figure 9. “Check Weights’ analyzes if all the weight cells are filled in appropriately.

Uheck Wwoeeahs
Pt by
Cargitr Fina Iz ard
Cirode =l
4

BN
FIGURE 8
FINAL GRADE MS EXCEL MACRO FLOWCHART

A g % D B =< I G A

Evaluation Measure Weight |Hollow #1 |'Weighted Grade |Hollow # |WWeighted Grade |Hollow #3 |WWeighted Grade
Cost [0.3405) 0932092 0.317693328] 0.703R15 0.239319502] 0483785 0.16R596517
|Critical Load 025831 0.02F559 0.00E353001) 0376431 0.097247882] 0.922545 0.238300355
'Sigma of Critical Load 0] 095738 0] 0.B5219 0] 0105721 1]
Percent Failure 0. 40091 0.159474 0.053925554] 0.858421 0.344101079] 0867363 0.347687ER3
{Final Grade 0.3584531913 0.6581163454 0.7525845835

FIGURE9
RESULTS OF THE FINAL GRADE EXCEL MACRO

Note that a weight of zero was assigned to the standard deviation (sigma) of the critical load because the percent failure
EM already takes into account the spread of the performance distribution.
According to the final grades, option Hollow #3 is the optimal choice.

Stage V: Sensitivity

To check the validity of the weights, a sensitivity analysiscan be performed. Figure 10 shows the results of this sensitivity
analysis.

The associated sensitivity graphs show that Hollow #3 has the highest final grades over the range of the weights used and
none of the graphs contain any ambiguity, which implies that any variations around the chosen weight values would not
affect the outcome.
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Sensitivity of Cost

Final Option Grades
°
@
&

0.24 0.26 0.28 03 0.32 0.34 0.36 0.38
Weight of Cost

0.4

0.42

[=e=Hollow #1
== Hollow #2
== Hollow #3

Final Option Grades

Sensitivity of Critical Load

0.16 0.18 0.2 0.22 024 0.26 0.28 0.3
Weight of Critical Load

[=e=Hollow #1.
—8=Hollow #2
=s—Hollow #3

Sensitivity of Percent Failure

Final Option Grades
°

03 032 034 036 038 04 042 044
Weight of Percent Failure

0.46

0.48

[==Hollow #1
| —t—Hollow #3

FIGURE 10

TOPLEFT: SENSITIVITY OF COST; TOPRIGHT: SENSITIVITY OF CRITICAL LOAD; BOTTOM: SENSITIVITY OF PERCENT FAILURE

CONCLUSION

This paper describes a decision making process that will be presented to students ina pilot program aiming to develop,
implement and assess stochastic modeling and simulation based approaches in engineering design education. Along with
lecture notes, various software modules, tutorials and practical examples were developed. The described approach will allow
the students to make decisions systematically and enable them to solve complicated, multi attribute decision problems
involving tolerances and uncertainty. By including this material in undergraduate engineering curricula, students will gain a
new regimented way of approaching an engineering design problem. Although they will only be introduced to a limited
version of thedecision making process, the students will nonetheless be able to solve any engineering design decision

problem within the scope of undergraduate engineering.
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