
International Conference on Engineering Education October  16–21, 2004, Gainesville, Florida. 
1 

iLab: A Scalable Architecture for Sharing Online Experiments 
 
 
Authors: 
 
V. Judson Harward, Massachusetts Institute of Technology, Cambridge, MA, |jud@mit.edu 
Jesús A. del Alamo, Massachusetts Institute of Technology, Cambridge, MA, |alamo@mit.edu 
Vijay S. Choudhary, Massachusetts Institute of Technology, Cambridge, MA, |vijayc@mit.edu 
Kimberley deLong, Massachusetts Institute of Technology, Cambridge, MA, |kirky@ceci.mit.edu 
James L. Hardison, Massachusetts Institute of Technology, Cambridge, MA, |hardison@alum.mit.edu 
Steven R. Lerman, Massachusetts Institute of Technology, Cambridge, MA, |lerman@mit.edu 
Jedidiah Northridge, Massachusetts Institute of Technology, Cambridge, MA, |jedidiah@mit.edu 
Daniel Talavera, Massachusetts Institute of Technology, Cambridge, MA, |calitaly@mit.edu 
Charuleka Varadharajan, Massachusetts Institute of Technology, Cambridge, MA, |charuv@mit.edu 

Shaomin Wang, Massachusetts Institute of Technology, Cambridge, MA, |smwang@mit.edu 
Karim Yehia, Massachusetts Institute of Technology, Cambridge, MA, |kyehia@mit.edu 
David Zych, Massachusetts Institute of Technology, Cambridge, MA, |dzych@mit.edu 

 
 
Abstract  ¾  We have developed a software architecture to support a scalable community of online experiments for use by 

students at multiple institutions . This work is base d on MIT’s over five year experience in deploying online laboratories in 
several engineering disciplines.  The iLab architecture provides highly reliable, generic services that are independent of any 
particular experiment domain, including services for use r authentication, authorization, experiment storage, and scheduling. 
We have been guided by two architectural principles.  First, we have striven to free the developers of an online experiment 
not only from as much code development as possible, but also fr om user management responsibilities and policy issues. 
Second, we believe that the architecture should make no assumptions about the platforms used by students, experiment 
implementers, or university IT support. Clients and servers communicate via web serv ices. We have already completed a 
reference implementation for “batched experiments”, those in which the entire course of an experiment can be specified 
before execution begins. This implementation has been tested successfully by deploying the MIT Microele ctronics WebLab 
(an online microelectronics device characterization test station)  over the Spring 2004 semester in a large undergraduate 
course at MIT involving over 100 students. In this case the generic Service Broker, implemented in the .NET env ironment, 
mediated between a Windows 2000 -based Lab Server and a graphic Java client. Students and faculty performed 
administrative operations using a standard browser over a secure web connection.  We are extend ing the architecture to 
support interactive experiments and are adding functionality to support searching for attributes in XML -encoded experiment 
result records. Our goal is for this architecture and our reference implementations to spur the development of new online 
laboratory experiences and enco urage the formation of educational consortia to share the expense and management of 
online labs. We are already exploring its use to make several MIT labs available to colleagues in Europe, Africa, Asia, and 
the Middle East.   
 
Index Terms  ¾ online experime nts, web services, scalable architecture, laboratory consortium  

 
 
MOTIVATION 
 
The iLab Project has deployed a wide variety of online experiments at M.I.T. since the fall of 2000. The experiments have 
ranged across a broad spectrum of engineering disciplines including chemical (a heat exchanger [1], polymer crystallization 
[2]), civil (seismic simulation [3], an instrumented flagpole [4]) and electrical engineering (semiconductor characterization 
[5-8]). In the first two years, the project explored the nature of online laboratories by encouraging disparate discipline-
specific approaches. Our  researchers focused on what was perceived as the greatest challenge, giving the student a laboratory 
experience that was as genuine as possible despite the lack of direct contact with the actual lab equipment. Most of these 
first-generation online experiments treated the mundane details of student, data, and resource management as an afterthought. 
Each experiment developed its own approach to validating students, scheduling their sessions with the online lab, and storing 
or returning the experiment results. Teams working on separate experiments frequently duplicated each other’s efforts. It 

Formatted:  Font color: Pink

Formatted:  Font color: Pink

Formatted:  Font color: Pink

Formatted:  Font color: Pink

Formatted:  Font color: Pink

Formatted:  Font color: Pink

Formatted:  Font color: Pink

Formatted:  Font color: Pink

Formatted:  Font color: Pink

Formatted:  Font color: Pink

Formatted:  Font color: Pink

Formatted:  Font color: Pink

Deleted: campuses

Deleted: subject 

Deleted: the whole

Deleted: Frequently 

Deleted: t

mailto:jud@mit.edu
mailto:jud@mit.edu
mailto:dzych@mit.edu
mailto:dzych@mit.edu
mailto:dzych@alum.mit.edu
mailto:dzych@alum.mit.edu
mailto:hardison@alum.mit.edu
mailto:hardison@alum.mit.edu
mailto:hardison@alum.mit.edu
mailto:hardison@alum.mit.edu
mailto:dzych@mit.edu
mailto:calitaly@mit.edu
mailto:dzych@mit.edu
mailto:dzych@mit.edu
mailto:dzych@mit.edu
mailto:dzych@alum.mit.edu
mailto:dzych@alum.mit.edu
mailto:dzych@alum.mit.edu
mailto:dzych@alum.mit.edu
mailto:dzych@alum.mit.edu
mailto:dzych@mit.edu


International Conference on Engineering Education October  16–21, 2004, Gainesville, Florida. 
2 

proved surprisingly difficult to provide stable and secure software mechanisms to manage these routine issues. In at least one 
case, it became necessary to have a graduate teaching assistant camp out beside the lab software server to manually enforce 
student scheduling because of the lack of an appropriate software mechanism to terminate a student’s lab sessions. 

More recently, however, we have recognized advantages that arise from a unified approach to online labs. This resulted 
in a decision over the summer of 2002 to try to build a common software architecture that could suppport experiments from 
all disciplines without limiting the freedom of the faculty and developers to design and implement the discipline specific 
portions of their online experiments. We first needed to determine, given the immense variety of laboratory experiments and 
equipment, whether they share sufficient characteristics so that they can be supported by a common software infrastructure. 
The fact that hardware vendors now provide low level control of lab devices via industry standard protocols such as GPIB 
does not address the issue of a high-level software architecture. Packages like National Instruments’ LabView ™  and its 
associated lower level libraries provide visualization and interface support, but they do not integrate with the types of 
enterprise scale software that universities are using to manage courses. 

We decided the leverage exists in providing general support for the framing and maintenance of a lab session while 
leaving details of the lab interface and control to domain specific experts or to vendors like National Instruments. That is, we 
want to distinguish the parts of using an online lab that are specific to a particular piece of lab equipment or to the series of 
tasks that comprise a particular experiment from the generic tasks that precede, manage, and follow any lab session. 

The student will usually need to authenticate himself to the lab software. The student’s online identity and affiliation will 
usually govern the labs that are subsequently made available. For experiments of some duration, the student may need to 
have previously reserved the online lab. Results need to be stored, analyzed, compared, or printed. The system may 
encourage collaborative work using standard application sharing and communication tools. The system should allow the 
student to forward a log of lab activity to a staff member to enlist their help with a problem. These capabilities are generic 
and transcend the individual experiment. Not all online experiments will require all of them, but most online experiments will 
require some of them. 

We also wanted our unified architecture to address a more subtle problem. The ability to make a lab accessible from the 
Internet makes it easier to share that lab with colleagues and students at other universities. Provided that network connectivity 
is sufficient, students can access an online lab from anywhere in the world. The approach of our first-generation labs required 
registering each student accessing an online experiment on the lab server connected to the lab equipment or on another 
machine that formed part of the same laboratory network. We soon realized this discouraged lab owners from sharing their 
equipment. In effect, it penalized faculty members who agreed to share their equipment by obligating them to administer the 
accounts of users from other universities. If the lab server stored the results of experiment runs, then the staff responsible for 
the lab server also assumed the responsibility for storing and archiving (or otherwise disposing of) student experiment results 
at the end of the semester. Different classes often have different policies about how students may team up to execute 
experiments or share their results afterwards. The owner of a lab server has no desire to manage the student accounts and 
experiment results of anyone else’s students except his or her own. A major goal of the iLab common architecture is to 
distribute software functionality so that the different participants in the distributed system can most naturally assume 
responsibility for their own tasks and not hinder or act as proxies for the other participants. Teaching faculty should manage 
their own students, while lab implementors should only be concerned with implementing and supporting their own labs and 
experiments. 

 

 
THE ILAB ARCHITECTURAL PROGRAM 

 
From the perspective of online laboratory management, experiments fall into three broad categories: 

1. Batched experiments  are those in which the entire course of the experiment can be specified before the 
experiment begins. MIT’s Microelectronics WebLab [5-8] provides an example. Through WebLab students can 
characterize a variety of semiconductor devices by preparing a test protocol. This is accomplished by using an 
interactive editor before the semiconductor characterization executes. 

2. Interactive experiments  are those in which the user monitors and can control one or more aspects of the 
experiment during its execution. MIT’s online Heat Exchanger [1] provides an example. Students can 
dynamically change the input to heating elements and the action of pumps controlling fluid circulation in the 
heat exchanger while watching instruments report the changing temperatures. 

3. Sensor experiments  are those in which users monitor or analyze real-time data streams without influencing the 
the phenomena being measured. MIT’s online photovoltaic station [11] provides a simple example. 

Each category of experiment requires a different mix of shared services. Since the user completely specifies a batched 
experiment before execution of the experiment begins, the user need not be online when the experiment is performed but 

Formatted:  Font: 10 pt, Italic

Formatted:  Font: (Default) MS Shell
Dlg, 8.5 pt

Deleted: lies 

Deleted: specific 

Deleted: will 

Deleted: a 

Deleted: his or her

Deleted: permanently 

Deleted: players 

Deleted: players

Deleted:  [refs]

Deleted:  [ref] 

Deleted: (

Deleted:  )



International Conference on Engineering Education October  16–21, 2004, Gainesville, Florida. 
3 

instead can retrieve the results later. This implies that batched experiments should generally be queued for execution in a way 
that maximizes the efficient use of the lab server rather than scheduled to maximize the convenience of the user. 

Since the user can control and alter at least some of the inputs of an interactive experiment, however, he or she must be 
online when the experiment executes. If an experiment run takes more than a few minutes, students and faculty will normally 
demand that experiments be scheduled so that students will not waste excessive time waiting for their turn at the apparatus.  

Sensor experiments usually allow no control except for the ability to subscribe to different data streams that may provide 
different resolutions or transformations of the base data. They also offer the ability to multicast the same data to many users; 
in contrast, batched and interactive experiments usually allow individual users or small teams to specify their own 
experiments that execute sequentially. A sensor experiment usually gathers data over a long period of time for statistical 
analysis or searches for events of interest in a continuous data stream. Such experiments often provide an archive of past data. 

The iLab Project at MIT ultimately plans to provide common services for all three types of online experiments. Both 
because the batched experiment’s simpler requirements and because of our close association with a working online batched 
experiment (MIT’s Microelectronics WebLab), we decided to develop this part of the architecture first. We have tested this 
stable prototype in a large MIT course with over 100 students (see below) and plan an initial open source release of the 
common batched experiment source code in the Fall of 2004. Design work for the interactive architecture began during the 
Spring of 2004, and two of us (Northridge and Yehia) implemented an experiment prototype based on an existing online 
crystallography experiment [9,10]. We expect to develop the prototype into a full interactive shared architecture this coming 
Fall, deploy it in an MIT class during the Spring of 2005, and release it in the Fall of 2005. We plan to proceed with the 
development of the sensor shared architecture in 2005-6. 

 
THE ROLE OF WEB SERVICES 
 
In theory, the software framework and the network technologies we use to build our architecture are implementation issues. 
With the rise of middleware and distributed application frameworks, however, one’s choice of a distributed computing 
strategy can affect the whole design of a project. 

There are design requirements in the iLab Project that immediately favor the use of web services. Students at one 
institution must be able to use a lab housed at a second institution. This requires an architecture that supports both lab-side 
services (e.g., the online lab itself) and client or student-side services (authentication and authorization, class management, 
student data storage for experiment specifications and results as well as user preferences). The lab side services may need to 
run on a different hardware and software platform than the client-side student software. The lab-side institution may enforce 
different networking policies (e.g., firewalls, directory and email services) than the client-side institution. The transparency of 
web services makes this technology an obvious choice to integrate our distributed application framework. 

Very often existing labs have a large preexisting code-base to manage the lab equipment or to display results and control 
the lab equipment from one or more client machines. In the case of Microelectronics WebLab, students had already used a 
first-generation version of the online lab implemented via a Java applet (the Java client used by the student) and a Windows 
2000 Server containing an Agilent GPIB interface board to control the semiconductor analyzer and switching matrix. The 
loose coupling of web services makes it easier to reuse such legacy code as the basis of a second-generation implementation 
based on the iLab Shared Architecture. Web services should also make it easier to incorporate vendor supplied modules in 
the overall architecture. 

When we turn to consider the future course of the project, the case for web services only becomes stronger. We have 
already mentioned that we expect the use of Internet accessible labs will foster increased cooperation between educational 
institutions. Some schools and colleges may be much more interested in becoming customers of such labs than in offering 
online labs themselves. They will need a means of discovering what online labs are available in their fields of interest and of 
verifying that those labs are compatible both with their campus networking and software installed base as well as the 
pedagogic goals of their courses. Web Services WSDL (Web Services Description Language, http://www.w3c.org/2002-
/ws/desc/) and UDDI (Universal Description, Discovery, and Integration, http://www.uddi.org/) provide a framework in 
which to conduct this discovery process. To carry this one step further, one can imagine WSDL-based negotiation that will 
match an Internet accessible lab with high end visualization and data analysis tools that are licensed by the client-side 
institution. 

For all the reasons above, we have based our shared software infrastructure for Internet accessible labs on web services. 
But it is also important to recognize that web services will not solve all the networking requirements of Internet accessible 
labs. Consider an online sensor lab that wants to multicast high bandwidth sensor data to subscribed clients. While web 
services may aid the subscription process, they don’t provide any support for streaming the multicast data to the students’ 
clients. 

 

Deleted:  (

Deleted: )

Deleted: deployed a 

Deleted: architecture 

Deleted: on 

Deleted: campus 

Deleted: on 

Deleted: campus

Deleted: campus 

Deleted: campus

Deleted: National Instruments

Deleted: stage and 

Deleted:  [ref]

Deleted: area 

Deleted: [ref] 

Deleted: [ref] 

Deleted: campus



International Conference on Engineering Education October  16–21, 2004, Gainesville, Florida. 
4 

THE BATCHED EXPERIMENT ARCHITECTURE 
 
Our goal in the first phase of developing a shared architecture has been to support batched experiments that cross institution 
boundaries. We have designed an architecture that in some ways resembles the typical three-tier web business architecture. 

1. The first tier is the student’s Client Application that either runs as an applet or as a downloaded application on the 
student’s workstation. 

2. The middle tier, called the Service Broker, provides the shared common services. It is backed by a standard 
relational database such as SQL Server™  or Oracle™. The student’s client communicates solely with the Service 
Broker, which forwards experiment specifications to the final third tier. Unlike the standard three-tier web 
architecture in which the middle tier resides on the business rather than the client side of the network, we expect the 
Service Broker will normally reside on a server at the student’s institution. If a university is willing to provide 
accounts for users from other institutions, however, the architecture allows the Service Broker to run on a separate 
campus from the client; in fact, it can be collocated with the lab itself. 

3. This third tier is the Lab Server itself, which executes the specified experiments and notifies the Service Broker 
when the results are ready to be retrieved. 

 
FIGURE. 1  
The Topology of the Batched Experiment Architecture. 

 
 

 
In this scheme, the student client and the lab server represent the domain- or lab-dependent software modules. We intend 

the Service Broker to be completely generic code. That is, we expect the operators of the Service Broker to be able to use a 
standard web browser to configure a fresh version of the Service Broker straight from the software distribution and to register 
and interoperate with any Lab Server that implements the appropriate Lab Server interface expressed in terms of web service 
SOAP calls defined in WSDL. The student’s client is once again a domain- or lab-dependent piece of code that must 
understand the protocol for specifying a particular experiment’s parameters. A student logs on and manages his or her 
account using a standard web browser. Once the student chooses the experiment that he or she wishes to execute, the client is 
launched and communicates with the Service Broker using a second web service interface. 

The Lab Server knows nothing about the students using the system, and it only stores experiment specifications and 
results temporarily. The Service Broker authenticates students, checks on their authorization to contact a particular Lab 
Server, accepts an experiment specification from the student’s client, and waits to retrieve the result once the experiment 
completes. The experiment specification and results are stored on the Service Broker, which also maintains the link between 
a student and his experiments. Thus all the resources consumed by a student, except for the runtime resources required to 
execute the experiment, can be drawn from a Service Broker usually located at the student’s institution. 

There must be a degree of trust between the Lab Server and the Service Broker, first and foremost because the Service 
Broker authenticates and vouches for student users. The Service Broker also indicates the student’s level of access to the Lab 
Server by forwarding a string key known as the effective group  when it submits an experiment specification. The Lab Server 
does not know on which student’s behalf it is executing an experiment. It only knows the requesting Service Broker and the 
effective group associated with the request. This allows lab suppliers to grant different levels of access to different effective 
groups on multiple Service Brokers, but it delegates to the Service Brokers all decisions about which students or staff can 
request experiment execution under the various effective groups. 

Formatted:  Space Before:  0 pt,
Numbered + Level: 1 + Numbering
Style: 1, 2, 3, … + Start at: 1 +
Alignment: Left + Aligned at:  0.25" +
Tab after:  0.5" + Indent at:  0.5",
Don't adjust space between Latin and
Asian text, Don't adjust space
between Asian text and numbers

Formatted:  Font: 10 pt

Formatted:  Font: 10 pt

Formatted:  Font: (Default) MS Shell
Dlg, 8.5 pt

Formatted:  Space Before:  0 pt,
Don't adjust space between Latin and
Asian text, Don't adjust space
between Asian text and numbers

Formatted:  Font: MS Shell Dlg, 8.5
pt

Deleted: campus 

Deleted: c

Deleted: a

Deleted:  

Deleted: on 

Deleted: campus

Deleted: on other campuses

Deleted: from 

Deleted: ¶

Deleted: staff 

Deleted: cooperate 

Deleted: W

Deleted: S

Deleted: on 

Deleted: campus



International Conference on Engineering Education October  16–21, 2004, Gainesville, Florida. 
5 

Conversely, the Service Broker knows nothing about the domain dependent nature of the experiments. It forwards an 
opaque object from the Lab Server to the student’s client describing the current lab configuration. When the student submits 
an experiment specification, it is forwarded to the Lab Server as another opaque object, and the results are returned as a third 
one. The only part of an experiment that the Service Broker understands is a metadata description of the experiment that can 
be used to search for and retrieve old experiments. This metadata is implemented as a class that contains fields common to all 
experiments, e.g., the Lab Server ID, the effective group, etc. It also includes an XML-based extension mechanism that will 
allow experiment descriptions to be expressed in domain specific XML schemas or DTDs. We assume that the Service 
Broker at one institution may give its students access to Lab Servers from multiple institutions, and a Lab Server may receive 
experiment specifications from Service Brokers at multiple institutions. 

In the batched experiment architecture the student’s workstation never contacts the Lab Server directly. We can maintain 
this strict discipline because the batched experiment requires so little communication between the client and the Lab Server. 
Conceptually, the execution of an experiment requires a single round trip over the network although the actual web service 
protocol is more complicated. This simplicity obviously does not extend to the cases of a streaming sensor experiment or an 
interactive experiment in which there are strong arguments for having the Service Broker authenticate the student’s client but 
then allow the client to connect to the Lab Server directly. 

 
Outline of a Student Batched Experiment Session 

 
The following walk through of a minimal student experiment session illustrates the batched experiment architecture in action. 
Table I highlights the interactions and web service calls between the components of the system: Service Broker (SB), Lab 
Server (LS), and student web browser and Lab Client. The Service Broker also offers a wide range of administrative 
functionality for student account and experiment record management that is not illustrated in this example. 

1. The student starts the session by logging in to the Service Broker (SB) using a secure connection (SSL). The SB 
provides an implementation of a standard name and password authentication scheme, but it can also integrate with a 
university’s enterprise scale authentication system (e.g., Kerberos). 

2. The SB responds by displaying a list of the groups in which the student is registered. Groups usually correspond to 
classes. 

3. The student selects one of the available groups (classes) for this session. 
4. The SB displays all the available Lab Clients known for this group. A Lab Client usually corresponds to a single 

experiment. 
5. The student selects one of the available Lab Clients. 
6. The SB now launches the Lab Client. This marks the transition in the student’s session from communicating with 

the SB using a web browser to view the SB’s active server pages to the running of an experiment during which the 
student communicates using the Lab Client and web services. We have explored two client technologies: (1) a Java 
applet that is launched by redirecting to a page with an embedded applet tag, and (2) a client implemented as an 
active server page launched simply by redirecting to the client page. 

7. The student edits the description of the experiment to be run using the client. When the experiment specification is 
complete, the student directs the client to invoke the web service Submit() method on the Service Broker. 

Submit() takes a text encoded version of the experiment specification as an argument. The SB is not expected to 
understand the specification. 

8. The SB stores a copy of the experiment specification and forwards the Submit() call on to the LS. 
9. The LS immediately returns a submission report that includes any error messages resulting from an illegal 

experiment specification. If the specification is legal, the LS queues the experiment for execution. 
10. The SB forwards the submission report back to the client along with an integer experiment ID that all parties now 

use to identify the experiment. 
11. Once the LS executes the experiment, the LS calls the Notify() web service on the SB to indicate that the 

experiment’s results are now available. 
12. The SB now requests the results from the LS using the RetrieveResult() web service. 
13. The LS returns the results and any error messages to the SB, which stores but can not interpret the experiment 

results. 
14. The client, at its leisure, can request the cached results from the SB using the client’s the RetrieveResult() 

web service. Note the client need not be logged on while the experiment executes. 
15. The SB returns the results and any error messages. 
 

TABLE I 
OUTLINE OF A STUDENT BATCHED EXPERIMENT SESSION 

Formatted:  Font: (Default) Times
New Roman

Deleted: on 

Deleted: campus 

Deleted: on 

Deleted: campuses

Deleted: on 

Deleted: campuses

Deleted: W

Deleted: S

Deleted: it 

Deleted: players in

Deleted: a 

Deleted: implementation

Deleted:  



International Conference on Engineering Education October  16–21, 2004, Gainesville, Florida. 
6 

 

STUDENT SERVICE BROKER LAB SERVER 
Using  Web Browser Using  Web Application  

1. Authenticates over SSL ›    
 2. ‹  Lists student’s groups (classes)  
3. Chooses group (class ) for session ›    
 4. ‹ Lists available Lab Clients 

(experiments) 
 

5. Chooses Lab Client (experiment ) ›    
 6. ‹ Launches Lab Client  
Using  Lab Client & Web Services (WS) Using  Web Services (WS) Using  Web Services (WS) 
7. Calls WS ›  Submit 
(experimentSpecification) 

  

 8. Calls WS›  Submit 
(experimentSpecification) 

 

  9. ‹ Returns SubmissionReport 
 10. ‹ Returns 

ClientSubmissionReport 

including experimentID 

 

  11. Executes experiment and 
‹ Calls WS 
Notify(experimentID) 

 12. Calls WS ›  
RetrieveResult(experimentID) 

 

  13. ‹ Returns ResultReport 
14. Calls WS ›  
RetrieveResult(experimentID) 

  

 15. ‹  Returns ResultReport  
 
FIELD TRIAL OF THE SHARED ARCHITECTURE 
 
The iLab Shared Architecture was test deployed in the Spring of 2004. For this first field trial, we decided to bring online a 
redesigned version of the MIT Microelectronics WebLab (WebLab 6.0). The Microelectronics WebLab allows students to 
characterize the current-voltage behavior of transistors and other microelectronic devices. Since it was first deployed in the 
Fall of 1998, it has been used by over 2000 students for graded assignments from three continents [5-8].  
 
Deploying the Microelectronics WebLab through the new Shared Architecture required the construction of two new web-
services interfaces for Java client and the lab server to interface to the Service Broker. In our first generation WebLab (v. 1.0-
5.0), the software did not allow for a clean split of user management from experiment execution functions. As a result, for 
this trial we constructed a new lab server from scratch.  Similarly, we completely redesigned the Java client application. Its 
look and basic ergonomics are the same as that of WebLab 5.0 [8], but its internal architecture is now far more modular. A 
screen shot of the Java client is shown in Figure 2. The details of the design of WebLab’s Java client and the Lab Server will 
be described in more detail in a separate publication.  

Deleted: selected 

Deleted: characteristics 

Deleted: nl02, icee 02 and 03

Deleted: the Service Broker to interface 
to the 

Deleted: system partition

Deleted: was 

Deleted: from scratch 

Deleted: icee 2003

Deleted: It also interfaces with the 
Service Broker through web services. 

Deleted: . X

Deleted: separately



International Conference on Engineering Education October  16–21, 2004, Gainesville, Florida. 
7 

FIGURE. 2  
Screenshot of the WebLab 6.0 Java Client showing an experiment in which the output characteristics of a bipolar transistor 
are obtained. 
 

 
 
The trial WebLab 6.0 and the iLab Shared Architecture was conducted in the Spring of 2004 in a junior-level subject in the 
Department of Electrical Engineering and Computer Science at MIT with about 100 students. Two assignments were given. 
These were of a similar character to those required in earlier editions of this class using previous versions of WebLab. In the 

Formatted:  Page break before

Deleted:  

Deleted: was deployed through



International Conference on Engineering Education October  16–21, 2004, Gainesville, Florida. 
8 

first assignment, students were asked to characterize and model a pn diode. In the second assignment, students were asked to 
characterize an npn bipolar transistor and an n-channel MOSFET and then asked to design a simple common-collector 
amplifier. Both were week-long assignments.  
 
During these assignments, the system worked nearly flawlessly. A histogram of usage for the first assignment is shown in 
Figure 3. As seen, the system handled all requests expeditiously. The queue of the system never held more than two jobs. 
 
FIGURE. 3  
Histogram of Experiment Queueing and Execution During the WebLab 6.0  Trial, Spring 2004. 
 

Lab Server Execution Records 

(2/3/2004 - 2/13/2004)

0

5

10

15

20

25

30

11
:0

0 
02

/0
3

17
:0

0 
02

/0
3

23
:0

0 
02

/0
3

05
:0

0 
02

/0
4

11
:0

0 
02

/0
4

17
:0

0 
02

/0
4

23
:0

0 
02

/0
4

05
:0

0 
02

/0
5

11
:0

0 
02

/0
5

17
:0

0 
02

/0
5

23
:0

0 
02

/0
5

05
:0

0 
02

/0
6

11
:0

0 
02

/0
6

17
:0

0 
02

/0
6

23
:0

0 
02

/0
6

05
:0

0 
02

/0
7

11
:0

0 
02

/0
7

17
:0

0 
02

/0
7

23
:0

0 
02

/0
7

05
:0

0 
02

/0
8

11
:0

0 
02

/0
8

17
:0

0 
02

/0
8

23
:0

0 
02

/0
8

05
:0

0 
02

/0
9

11
:0

0 
02

/0
9

17
:0

0 
02

/0
9

23
:0

0 
02

/0
9

05
:0

0 
02

/1
0

11
:0

0 
02

/1
0

17
:0

0 
02

/1
0

23
:0

0 
02

/1
0

05
:0

0 
02

/1
1

11
:0

0 
02

/1
1

17
:0

0 
02

/1
1

23
:0

0 
02

/1
1

05
:0

0 
02

/1
2

11
:0

0 
02

/1
2

17
:0

0 
02

/1
2

23
:0

0 
02

/1
2

05
:0

0 
02

/1
3

11
:0

0 
02

/1
3

Jobs Per Hour Max. Queue Length Per Hour
 

 
Our plan is for this new system to become the default version of WebLab in the Fall of 2004. For the Fall academic semester, 
we have accepted commitments for  the system to be used by over 1000 students from four continents.  

 

THE ILAB COMMUNITY 
 
The ultimate goal of the iLab Project is to provide a much richer set of experiment resources for students at MIT and 
elsewhere. The iLab architecture should encourage educational institutions to share both laboratory facilities and carefully 
designed lab exercises based on those facilities. While such sharing is crucial to the growth of a community of iLab providers 
and users, the members of this community need not all make identical contributions. The experience of MIT’s 
Microelectronics WebLab has already shown that colleagues at other universities can contribute to the educational value of 
the lab by making their faculties’ lab assignments publicly available. During the Fall 2004 semester, we have accepted 
commitments for  the system to be used by over 1000 students from four continents. A second batched experiment on 
feedback systems has come online at MIT this summer [12] and will be used in a course this coming fall. Over the course of 
the next academic year we hope to see new experiments come on  line at universities in Sweden, Lebanon, and Taiwan. 
 
At the same time, we plan to make a wider community aware of the iLab architecture through a number of initiatives. In 
cooperation with the Open Courseware Initiative (OCW) at MIT, we intend to set up a special Service Broker at MIT that 
will offer public access to a version of the Microelectronics WebLab. The initial batched experiment Service Broker source 
code will be released in stages under an open source license this Fall and W inter. Finally, we intend to hold a workshop at 
MIT in January, 2005, for potential iLab developers. 
 
The iLab initiative will only grow if colleagues comment on the architecture and contribute to the set of online labs and 
associated educational materials. We welcome the involvement of contributors at every level. The success of the iLab 

Formatted:  No page break before

Deleted: y

Deleted: . Y

Deleted:  

Deleted: [more from the rest of the 
team here with more postmortem?]¶

Deleted: s

Deleted: is to 

Deleted: to use

Deleted: we expect the MIT 
Microelectronics WebLab to be used by 
over 1000 students from institutions in 
countries ranging from Sweden to Taiwan



International Conference on Engineering Education October  16–21, 2004, Gainesville, Florida. 
9 

concept will ultimately be measured by the degree to which it fosters cooperation and sharing between institutions, 
experimenters, faculty, and students. 
 

ACKNOWLEDGEMENT 
 
This project is funded by Microsoft through iCampus, the MIT-Microsoft Alliance. The instruments used in WebLab were 
donated by Agilent Technologies. 
 

REFERENCES 
 
[1] |http://heatex.mit.edu. 

[2] |http://web.mit.edu/rutledgegroup/projects/onlinelab.html. 

[3] |http://flagpole.mit.edu:8000/shaketable/. 

[4] Amaratunga, K., and R. Sudarshan, “A Virtual Laboratory for Real-Time Monitoring of Civil Engineering Infrastructure”, ICEE, Manchester (UK), 
2002. 

[5] del Alamo, J. A., L. Brooks, C. McLean, J. Hardison, G. Mishuris, V. Chang, and L. Hui, "The MIT Microelectronics WebLab: a Web-Enabled 
Remote Laboratory for Microelectronic Device Characterization", World Congress on Networked Learning in a Global Environment, Berlin 
(Germany), 2002. 

[6] del Alamo, J. A., L. Brooks, C. McLean, J. Hardison, G. Mishuris, V. Chang, and L. Hui, "Educational Experiments with an Online Microelectronics 
Laboratory", ICEE, Manchester (UK), 2002. 

[7] del Alamo, J. A., L. Brooks, C. McLean, J. Hardison, G. Mishuris, V. Chang, and L. Hui, “MIT Microelectronics WebLab”, chapter in T. Fjeldly and 
M. Shur, Eds., Lab on the Web - Running Real Electronics Experiments via the Internet , Wiley-IEEE, 2003, pp. 49-87. 

[8] del Alamo, V. Chang, J. Hardison, D. Zych, and L. Hui, " An Online Microelectronics Device Characterization Laboratory with a Circuit-like User 
Interface", ICEE, Valencia (Spain), 2003. 

[9] Northridge, Jedidiah, “A Federated Time Distribution System for Online Laboratories”, MIT Master of Science thesis, May, 2004. 

[10]  Yehia, Karim, “The iLab Service Broker: a Software Infrastructure Providing Common Services in Support of Internet Accessible Laboratories”, MIT 
Master of Science thesis, May, 2004. 

[11] |http://pvbase.mit.edu/cgi-bin/index.py. 

[12] http://web.mit.edu/6.302/www/weblab. 

Formatted:  Font color: Pink

Formatted:  References, Justified

Formatted:  Font color: Pink

Formatted:  Font color: Pink

Formatted:  Font: Not Italic

Formatted:  Space After:  6 pt

Formatted:  Font: Not Italic

Formatted:  References, Justified

Formatted:  Font: (Default) Times
New Roman

Formatted:  Font: Italic

Formatted:  Font: (Default) Times
New Roman

Formatted:  Font color: Pink

http://heatex.mit.edu/
http://web.mit.edu/rutledgegroup/projects/onlinelab.html
http://flagpole.mit.edu:8000/shaketable/
http://pvbase.mit.edu/cgi-bin/index.py
http://pvbase.mit.edu/cgi-bin/index.py
http://pvbase.mit.edu/cgi-bin/index.py

	Acknowledgement

