
Session

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
1

EMBEDDING CIRCUIT SIMULATIONS INTO ELECTRONICS DESIGN
COURSEWARE

Saravanan Solaimalai1 and Peter Hicks 2

1 Saravanan Solaimalai, Dept. of Electrical Eng. and Electronics, UMIST, PO Box 88, Manchester, M60 1QD, UK.
2 Peter Hicks, Department of Electrical Engineering and Electronics, UMIST, PO Box 88, Manchester, M60 1QD, UK. P.J.Hicks@umist.ac.uk.

Abstract  The integration of Web-based simulations into
on-line tutorial courseware can be used to create a very
powerful learning environment. Preliminary work has
focused on use of the Common Gateway Interface (CGI)
mechanism to establish communication between an
electronic circuit simulator, namely PSPICE, running on a
remote server and a Web-packaged Authorware application
called EDEC running on a client machine. A graphical
front-end allows users to alter simulation models without
any knowledge of the simulation language. Simulation
results are processed using the Authorware scripting
language before being displayed both in numerical and
graphical formats. Results are presented which illustrate the
effectiveness of this technique as an aid to learning the
principles of electronic circuit design. The current system is
not entirely portable and limited to a single computer
system. Introducing distributed computing methods with
CORBA means that the system could be extended to benefit
from the distributed and parallel nature of the World Wide
Web.

Index Terms  Courseware, electronic circuit design,
simulation, on-line Web-based tutorial.

INTRODUCTION

The advent of communication and information technology,
particularly the World Wide Web, is bringing about a
revolution in education. Higher education in particular has
and still is undergoing significant changes to make the most
of this revolution. There have been numerous efforts [1] to
demonstrate the power of interactive computer-based
learning material (courseware) as an aid to teaching and
learning. By and large, these coursewares aim to benefit
from the added interactivity computer-based simulations
have to offer.

SIMULATIONS FOR EDUCATION

The integration of computer simulations into courseware has
long been recognised as a powerful tool for learning, giving
learners an environment in which they can explore subtlety
and variation. More specifically, Thomas and Schnurr [2]
define simulations used in the context of education as
educational simulation, i.e. "one that is used to teach about
the system modelled by simulation rather than the process of
modelling itself". Computer simulation is quite popular in

instruction [3], and its benefits are numerous [4] - [7]. These
include its suitability for contemporary approaches to active
learning whereby the learner is invited to explore and
discover the important concepts in the domain to be
mastered instead of being given direct instructions about it.
Students are also free to accomplish this using their own
preferred approach and at their own pace, unlike in the
traditional classroom method where students are expected to
absorb most if not all of what is being taught.

Simulation tools assist students in developing an in-
depth understanding of complex mathematical and physical
concepts, which otherwise would just be seen as equations in
a textbook. Simulation-based learning methods allow
students to experiment with a model and therefore acquire
the ability to generate and evaluate hypotheses. Knowledge
that is self-discovered also stays more firmly than
knowledge that is told. Thus simulations indirectly generate
interest in a subject area. Simulations are very useful for
modelling real world situations that would otherwise be
impossible, too dangerous, too expensive or too time
consuming to perform. In engineering education, for
example, computer based simulations are essential tools.
Working with simulators more closely emulates the actual
environment of today’s engineers and helps prepare
engineering students to face the demands of the industry.

Using simulations in education, however, has its
drawbacks. In general, they are costly to buy or produce,
with commercial simulations normally being targeted at
designers or researchers and not teachers or students [2].
There is also a steep learning curve associated with
simulations, and students using these tools often require
close supervision and support [7]. Simulation-based course
authors should take into consideration the need for a guiding
and focusing tutor (or other experts) when attempting to use
simulation in an education environment.

WEB-BASED SIMULATIONS

The use of the World Wide Web (WWW) to deliver learning
material is a relatively recent phenomenon. Its advantages
over classroom teaching include greater flexibility and
accessibility, the potential for more interactivity, and
portability due to its platform independence [1]-[4]. The
Web is also more cost-effective [2] than any other
alternative medium, and acts as an environment that can
foster user motivation [3].

Session

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
2

Due to the nature of its implementation, a single
instance of the simulation tool (on the Web server) is
sufficient for such a system, thus saving the cost and
portability issue involved in installing the simulation tool in
multiple machines. The saving of cost is particularly
attractive to institutions of higher education as some
simulation tools may not form a major component of a
particular course but could come into use in certain
instances. Licensing of the simulation tool may have to be
altered, but would undoubtedly be cheaper. Other benefits of
a Web-based educational simulation include wide
accessibility, controlled access, efficient maintenance and
increased integration [8]. Anyone with a standard Web
browser (and sufficient permission) can access the
simulation tool at any time of the day, and administrators
can control access to it in an efficient and centralised
manner. Maintenance of the simulation tool is also a matter
of updating or repairing a single instance of it, i.e. on the
server. Increased integration on the other hand refers to the
fact that the simulation tool can be integrated with other
Web browser-supported services with little effort.

Web-based Simulations for Electronic Engineering

Over the last ten years a consortium of universities in the
UK has been developing computer-based learning material
for use in electronic engineering education [11]. Known as
the Electronics Design Education Consortium, or EDEC for
short, the group has produced a wide range of modules
spanning analogue and digital circuit design, high level
system design and testing and design for testability. The
project is funded under the UK national Teaching and
Learning Technology Programme (TLTP) [12]. In common
with much of the courseware produced under the TLTP
initiative EDEC was developed using a commercially
available authoring tool, in this case Macromedia’s
Authorware Professional. Using the latter's Shockwave
technology the EDEC modules can be packaged for delivery
over the Web.

A primary objective for EDEC was to enhance the
educational value of Electronic Computer Aided Design
(ECAD) tools, with special emphasis on the use of
Berkeley’s SPICE (Simulation Program with Integrated
Circuit Emphasis) software for circuit design. SPICE, which
has become the de facto industrial standard for computer
aided design for electronic circuits over the years, is the
most commonly used analogue circuit simulator today. It is
widely used in electronic engineering related courses in most
universities. As such the emphasis on SPICE as a simulation
tool is appropriate.

The concept of Educational Simulation for Electronic
Engineeering (ESEE) is to extend the Web-based EDEC
courseware material by embedding access to electronic
simulation tools within it.

POSSIBLE APPROACHES

The diversity of methods employed in Web-based
simulations makes it difficult to review every possible
approach here. In general, established approaches for Web-
based simulation delivery come under three categories [13].
These approaches are focussed around the different methods
of sending simulation requests (simulation parameters) and
displaying their responses (simulation results): Remote
Simulation, Local Simulation, and Remote & Local
Simulation.

Of the three approaches outlined above, Remote
Simulation (with CGI technology) was chosen as the initial
project implementation method for reasons of popularity,
wide spread availability and relative ease of programming
when compared to two other approaches. Having chosen
CGI as the implementation method, Perl was the obvious
choice for the programming language:

• Perl is the most popular and appropriate language for
writing CGI programs.

• Being an interpreted language, Perl scripts are more
portable than code written in compiled languages.

• Perl makes code modification easier for developers than
using C/C++ or Java.

• Perl is best for short and simple tasks, and therefore
suitable for this project.

The Microsoft Internet Information Server (IIS) was
chosen as the Web server and the evaluation version of
MicroSim’s PSPICE was selected as the SPICE simulation
engine.

ESEE PROTOTYPE IMPLEMENTATION

The architecture of ESEE is essentially that of the Internet
client-server architecture and can best be understood with
reference to Figure 1. Note that the client’s Operating
System can either be a Windows or a Macintosh operating
system as the Authorware Web Player is only supported on
these two platforms. The Authorware Web Player runs as an
add-on (installed as a plug-in) to the Web browser and is
where the Web-packaged courseware would execute.

The Internet Information Server plays a central role on
the Server side. All Web, or HTTP transactions have to go
through the Web Server. The Courseware Files storage is
part of the computer’s permanent storage. Perl programs,
stored within the Perl Scripts storage area, execute in a
separate region of the server’s memory space, known as the
CGI process space. This is a feature of a CGI program that
ensures that its operation is independent of the server’s
operation. The PSPICE program is invoked by the CGI
program and instructed to simulate a circuit file from the
SPICE Files storage. The output data is then sent to the
simulation interface running on the Authorware Web Player.

Session

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
3

Operating System

Web
Browser

Authorware
Web Player

Web Server

Internet
Information Server

CGI
program

PSPICE
program

Windows NT Server

Client Server

SPICE files

template
circuit file

temporary
circuit file

temporary
output file

1

2

3

4
5

6

7

8
9

FIGURE 1
SIMPLIFIED FLOW DIAGRAM FOR THE WEB-BASED SIMULATION ENVIRONMENT.

The diagram in Figure 1 depicts the simplified sequence
of events (shown with numbers) that occur when a
simulation is run on the system. An explanation of the
numbered events is given below:

1. The Authorware Web Player (where the simulation
interface executes) requests for a Perl script (CGI
program), passing to it the parameters for the circuit
simulation.

2. The Web Server spawns a new CGI environment and
causes the CGI program to run.

3. The CGI program reads the template circuit file, and …
4. … creates a temporary file describing the circuit with

the parameters provided by the user.
5. The CGI program then invokes the PSPICE program,

and ….
6. …. runs a simulation of the circuit file created in (4).
7. PSPICE writes the results of the simulation into an

output file.
8. The client requests for data from the output file …..
9. ….. which is then processed in the Authorware Web

Player

Examplars

A number of exemplars have been created to demonstrate
the potential of embedding educational simulation into the
EDEC courseware. These use simple linear dc circuits and
bipolar transistor circuits to illustrate some of their
fundamental characteristics.

In order to extend the interactivity of the simulation
environment beyond Authorware’s standard interactive
components, ActiveX controls were used. Values of all
circuit components, including those which were not
modified by the user, are sent to the Perl script for
processing. A temporary circuit is generated by the Perl

script, replacing the element values with those obtained from
the Authorware Web-packaged piece.

SPICE is invoked to simulate the circuit described by
the temporary circuit file using a CGI program. Although
slight variations exist between the SPICE simulation output
files of different manufacturers' ECAD tools, there is a
general pattern that is adhered to, which makes manual
interpretation possible.

The SPICE output file is downloaded by the Web-
packaged Authorware piece for post-simulation processing.
Performing post-simulation processing on the client machine
instead of the server aims to achieve two significant
advantages, (i) it takes the output processing burden off the
server and (ii) less data is transmitted over the network
making repeated execution faster.

FIGURE 2
GRAPHICAL POST-SIMULATION PROCESSING

Session

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
4

The idea behind graphical post-simulation processing
(Figure 2) is to present the numerical values in a visual form,
which can help enhance the understanding of simulation
results. A custom-made plotting program was used which
was coded entirely using the Authorware scripting language.
In one case Gnuplot, a public domain plotting program, was
used to generate the plots instead. Gnuplot was invoked
using a Perl script in the same way SPICE was launched.

Testing

As in any software development, testing is an important part
of quality assurance. It ultimately aims to review the
requirements specification, design and coding methods
employed in this project. Testing of the Web-based
simulation system was carried out in three distinct stages:
unit testing, integration testing, and validation testing. In the
last case the tests were conducted with a random selection of
electronic engineering students, academics, computer
support staff, and other prospective users of the system.

Subsequently, an evaluation exercise to study the
effectiveness of EDEC as an electronic engineering
courseware was conducted by external evaluators on the 20th

of February 2002. The focus of the evaluation were the
Web-based simulations exemplars embedded into the EDEC
Courseware using the methods introduced in the ESEE
project. Among other things the report has concluded is that
embedding simulations into a courseware like EDEC adds to
the value of the courseware itself. Students enjoyed the
ability to explore the effects of varying circuit parameters
and observing the outcome in real-time. Visualisation, like
that provided in the exemplar, aided student comprehension
of the behaviour of a simulated model, such as a diode I-V
characteristics.

IMPROVING THE ESEE PROJECT

Component, or simulation model reuse is an important
aspect of Web-based simulations. As Ernst[7] describes it,
there are several key features that distinguish the future of
simulation practice, impelled by the maturing of Web-based
simulation, from the current and traditional approaches.
These are:
• Digital object proliferation – as with the recent changes

in the Web strategy, Web content of the future will be
more object-oriented than document-oriented. With
these changes, digital objects, in this context, simulation
models, will increasingly become a commonplace on
the Web.

• Software standard proliferation – numerous standards
have been introduced in relation to interoperability of
software. These have been critical in the defining and
adaptation of Web-based simulations approaches. HLA,
UML, CORBA, XML and OLE/COM are important
standards in this respect.

• Model construction by composition – the proliferation
of digital objects coupled with the intrinsic features of

object-oriented approaches, such as inheritance and data
encapsulation, would give rise to model construction by
composition of existing digital objects.

• Proliferation of simulation use by non-experts – with the
wide accessibility rendered to simulation tools by the
Web, these normally expensive expert systems will
become available to the masses.

• Multi-tier architecture and multi-language systems – the
diversity of programming tasks dictates a diversity of
programming styles and therefore languages. Multi-
tiered application development, an increasingly
dominant approach, is necessitated by the specialisation
and optimisation of applications.

In the ESEE projects, some of these features are more
apparent than others. ESEE was developed to cater for the
needs of a specialist group, the education community, in
particular the higher education institutions. Building the
interface to the SPICE simulation software into the
Authorware Web application allows non-experts (with
reference to the SPICE simulator) to get a handle on
executing circuits designs. This is particularly important
requirement for the project as the system was designed as a
courseware to teach electronic engineering related subjects
and not how to use the simulator itself. In ESEE, model
composition existed at simulator level, whereby SPICE
models from third party could be added to the simulator
model library, which was sufficient for its purpose.

As a prototype system, ESEE took the simplest path
possible for a Web-based access to a remote simulation
program. The CGI interface, a World Wide Web Consortium
(W3C) standard established since 1993, is a means by which
an external application can interact with a HTTP (Web)
server. However, the CGI mechanism has its pitfalls [15].
The most pronounced of these is the process creation
overhead and the security vulnerability it introduces.

Some argue that a solution to this problem would be to
extend the Web server using its Application Programming
Interface (API). Several Web server producers, e.g.
Microsoft and Netscape, provide these API extensions,
which aim to eliminate the shortcomings of the CGI
interface. Such APIs, however, are proprietary in nature and
owing to the sharing of environment, can cripple the Web
server in the event of a malfunction.

By far, Java server-side solutions present the most
attractive of CGI alternatives[1]. Besides the code mobility
that the Java programming language provides, the Servlets
single greatest advantage over a CGI program is that it can
be launched once to service many clients. New Servlet
requests require only a lightweight thread context switching,
incurring much lower overheads. This, combined with Java's
multi-threading, object-orientedness, rich class library and
portability make it an increasingly popular replacement for
CGI-Perl.

Simple tests were carried out with examplar programs to
validate the notion that Java Servlet would serve ESEE

Session

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
5

better from a Web-based application point of view. Test
results demonstrated that the two different implementations
were, not surprisingly, comparable. There was no significant
dissimilarity in response time, i.e. the speed of processing
the simulation request. This can be attributed to the
simplicity of the tasks involved. Perl is an interpreted
language, which means, it is compiled every time it is
invoked. Java, on the other hand, is compiled into bytecodes
during coding. Nevertheless, bytecodes would still have to
be ‘interpreted’ or converted into machine code before it can
be run on the Java Virtual Machine. Hence, both
mechanisms introduce an overhead not present in binary
programs, such as C++. Conclusion from initial tests suggest
the simplicity of the server tasks render the Perl-CGI
approach more appealing than the Java Servlet approach.

Using XML for data interchange

ESEE exemplars used non-standard data exchange
methods. It highlights the problems typically faced in data
interchange with use of non-standard or proprietary
interfaces between different software. The two most
important software components that make up the interaction
in ESEE are the Authorware application and the SPICE
simulator. While the well-defined and documented format of
SPICE netlists (input circuit files/decks) establishes a
standard interface to circuit simulations on SPICE-based
simulators, the diverse range of output formats has the exact
opposite effect.

The various implementers of the SPICE simulator have
taken the liberty to format the output data in a manner that
suites their style of presentation. Although the outcome from
an analysis is the same, a common extraction method cannot
be used to parse spice output files from the different
simulators. One way around this problem was to introduce
another abstract component to the architecture, the Metadata
Store. By devising a method that allows the Authorware
application to make sense of the data in the output file rather
than simply make a calculated guess as to where a particular
data is located, the dependence on its proprietary
structure/format can be eliminated.

The description of the data contained in the output file is
called metadata. The metadata store would therefore contain
converted SPICE output files describing the data contained
in a particular output file. From this description, the
Authorware application would be able to locate the data of
interest for a particular simulation.

The metadata files would be written as XML (eXtended
Markup Language) files. XML, a subset of the industry
standard SGML, is syntax for the transport of information
for exchanging structured data. The XML file will consist of
a purpose written Schema [14] for SPICE circuit outputs.

Figure 5 shows the ESEE physical architecture after the
XML components are incorporated. The XML Interpreter,
XML Converter together with both the XML Output and
DTD (Schema) stores would essentially make up the abstract

component Metadata Store. Work on the XML conversion is
still in progress.

Operating System

Web Browser

Authorware
Web Player

XML
Interpreter

CGI
program

Data Files

template netlist
file

Spice netlist

XML output

XML DTD

SPICE

1
2

3

4

5

Internet
Information

Server

Web
Server

XML
Converter

6

7

8

FIG 5
 THE ESEE ARCHITECTURE WITH THE XML-MEDATA STORE

DISTRIBUTED PARALLEL PROCESSING

One of the initial objectives of the project was to design the
system for future expandability yet keeping it simple for
developers to construct new simulation exercises. Designing
a system that meets such requirements is possibly made
easier with a more modular or object-oriented approach.
Performance is also a critical aspect of the overall design of
the system as it is anticipated as being one of the more
influential of factors from a user’s point of view. The
underlying mechanism has to cater for future expansions
without allowing it to take a toll on the overall performance.

The Internet (and hence the Web) is a natural
heterogeneous distributed collection of computers.
Designing a system to operate on a single platform has it
risks. If the simulation program, or any other program the
Web-based simulation attempts to access terminates
abnormally, it has the potential of affecting the other more
critical services on the platform. Also, designing a system
for one platform can make it useless in the future if there is a
forced migration onto another system. Given that higher
education institutions don’t always use the same system for
the same purpose, it is reasonable to expect that the proposed
system would have less appeal if it were designed for only
one kind of platform. These sorts of typical problems with
Web application development can be addressed by using
middleware, of which CORBA is one.

CORBA

CORBA stands for Common Object Resource Broker. It is a
specification (rather than a group of products) that was
developed by the Object Management Group (OMG)[16].
OMG contends that these specifications make it possible to
develop a heterogeneous computing environment across all
major hardware platforms and operating systems.

Unlike CGI and its alternatives such a Java Servlets, the
CORBA implementation is component-based (object-based)
and preserves the modularity that objects provide. Although

Session

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
6

CGI-like architecture is currently the predominant model for
creating 3-tier client-server solutions, the uptake of CORBA
is increasing by the day[17]. Compared to competing
standards like Microsoft’s DCOM and Java’s Enterprise
Java Beans (EJB), CORBA is not vendor (or language)
specific and has a large support base. CORBA specification
is implementable in numerous languages, including C, C++,
Java, Perl, and Python.

CORBA (IIOP)

Client ClientClient

Simulator
(SPICE)

DBMS

Courseware
Server

FIG 6
 ESEE ON CORBA ARCHITECTURE

In ESEE’s context, the implementation of the CORBA
architecture would look like Figure 6. As can be seen from
the figure, this architecture facilitates the addition of other
components to the system such as a Database Management
System (DBMS) to monitor student progress. More
importantly, this lends itself to a more stable and possibly
faster system. The different objects, i.e. applications, can
reside on different machines, e.g. SPICE on a Unix server,
the courseware in a dedicated Web server, and DBMS on an
NT Server. Having a dedicated computer to run the different
applications can also potentially increase speed of response
although it is subject to network messaging latency.

CONCLUSION AND FUTURE WORK

In terms of feasibilty, the ESEE project has been
successful in achieving its primary target of embedding an
educational simulation into the EDEC courseware.
Specifically, the exemplars created in this project
demonstrate that controllable simulation can be implemented
within a Web-packaged Authorware piece in a manner that
is suitable for integration with the eventual Web-based
EDEC courseware. Work of introducing XML for data
interchange into the current CORBA-based system is
underway.

ACKNOWLEDGEMENT

The authors wish to acknowledge the contributions of
colleagues in the EDEC consortium whose names are too

numerous to list here. The Teaching and Learning
Technology Programme is jointly funded by the four UK
higher education funding bodies, HEFCE, HEFCW, SHEFC
and DENI, whose support is gratefully acknowledged.

REFERENCES

[1] Hicks, P.J., Dagless, E. L., Jones, P. L., Kiniment D. J., Lidgey, F. J.,
Massara, R. E., Massara, Taylor, D., Walczowski, L. T., “A computer-
based teaching system for Electronic Design Education: EDEC”, The
International Journal of Engineering Education, Vol. 13, No. 1, 1997,
pp. 20-28.

[2] Thomas, R and Schnurr, C, "Simulations for education: the potential
and reality", Active Learning, No. 9, December 1998, pp. 65-66.

[3] Jong, T de, Andel, J van, Leiblum, M, and Mirande, M, "Computer
assisted learning in higher education in the Netherlands, a review of
findings", Computers & Education, Vol. 19, 1992, pp. 381-386.

[4] Zillesen, P van S, "Using Educational Computer Simulations", Van
Hall Institute, http://www.xs4all.nl/~eszet/personal/educsim.html
1998.

[5] Hensgens, J, Rosmalen, P van, and Hahn, B, "Microelectronics
simulation-based training on a virtual campus", Elsevier Science B.
V., Displays 18, 1998, pp. 221-229.

[6] Fisher, S E and Michielssen, E, "Mathematica Assisted Web-based
Antenna Education", IEEE Transactions on Education, Vol. 41, No. 4,
Rapid Publications Supplement CD, November 1998.

[7] Jong, T de, Joolingen, W van, Scott, D, Hoog, R de, Lapied, L and
Valent, R, "SMISLE: System for Multimedia Integrated Simulation
Learning Environments", in Jong, T, Sarti, L. "Design and Production
of Multimedia and Simulation-based Learning Material", Kluwer
Academic Publisher, Netherlands, 1994, pp. 133-165.

[8] Veith, T L, "World Wide Web-based Simulation", International
Engineering Education Journal, Vol. 14, No. 5, 1998, pp. 316-321.

[9] Regnier, J W and Wilamowski, B M, "SPICE Simulation and Analysis
through Internet and Intranet Networks", IEEE Circuit and Devices
Magazine, May 1998, pp. 9-12.

[10] Fisher, S E and Michielssen, E, "Mathematica Assisted Web-based
Antenna Education", IEEE Transactions on Education, Vol. 41, No. 4,
Rapid Publications Supplement CD, November 1998.

[11] Hicks, PJ, Dagless, E L, Jones, P L, Kiniment D J, Lidgey, F J,
Massara, R E, Taylor, D, and Walczowski, L T, "A computer-based
teaching system for Electronic Design Education: EDEC", The
International Journal of Engineering Education, Vol. 13, No. 1, 1997,
pp. 20-28. See also http://edec.brookes.ac.uk/

[12] Teaching and Learning Technology Programme (TLTP), see
http://www.ncteam.ac.uk/tltp.html

[13] Lorenz, P, Dorwarth, H, Ritter, K and Schriber, T, "Towards a Web
based simulation environment", Proceedings of the 1997 Winter
Simulation Conference, available at
http://www.informscs.org/wsc97papers/prog97.html

[14] Page, E. H. and Opper, J. M. (1999). "Investigating the Application of
Web-based Simulation Principles within the Architecture for a Next-
Generation Computer Generated Forces Model". Elsevier Science.
Available at (Accessed 15 June 1999).

[15] Colburn, R., "CGI Alternatives," in CGI Programming in a Week.
Indiana: Sams. net, 1998, pp. 251-265.

[16] "CORBA Success Stories". (2001). [Web] Object Management Group
Inc. Available at http://www.corba.org/success.htm (Accessed 31
January 2002).

