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ABSTRACT: Algorithm concretization with robots combines hands-on robotics and traditional 
algorithm visualization techniques to assist diverse learners to understand the basic idea of a given 
algorithm. In this way, we bring algorithms into the real physical world where students can touch the 
data structures during the execution. We present a proof-of-concept implementation with a few sorting 
algorithms. Moreover, we have carried out an evaluation with 13-to-15-year old children who used the 
concretization to comprehend an algorithm. The results indicate that algorithm concretization can 
enhance their learning process. Our implementation experience and the analysis of the experiment give 
new directions to the further development for both the educational robotics and the learning environment. 
Our aim is to build a new learning environment that helps students to understand algorithms and to 
acquire programming skills through concretization with robotics. 

1 INTRODUCTION (ROBOTICS AND ITS APPLICATIONS. HISTORICAL VIEW) 
Usually in the first year of Computer Science studies, one of the main difficulties for the students is 

the understanding of algorithms. The conventional approach of teaching algorithms, inherited from 
former education, consists mainly of verbal explanations along with the use of blackboard and / or slides, 
a rather “static” point of view in contrast to the idea embodied in algorithm: how data (input) is 
transformed into outputs over time. Thus it seems natural to show how they evolve with film-like tools 
[BAECKER, R. M. 1983]. This idea is based on what is called algorithm visualization whose aim is, 
apart from another description of algorithm’s activity, to seek interaction with the students. [BEN-ARI, 
M., MYLLER, N., SUTINEN, E., & TARHIO, J. 2002] [FLEISCHER, R., & KUČERA, L. 2002]. 
Nevertheless, most of the visualizations available are constrained within computer screens, and it is 
difficult to find a suitable balance between animation and interaction [FALTIN, N. 2002]. 

Nowadays, with the dropping of robot prices, and specifically with Lego™ Mindstorms Robots 
release, robotics has been adopted in the teaching of Computer Science. Robots provide a sort of 
fascination to people [NARAYAN, S., TOMPKINS, J. 2003] which increases their level of engagement 
in the learning of programming, networking, distributed systems, etc. and a novel viewpoint for teaching. 
However, there have been negative results [FAGIN, B., MERKLE, L. 2002]: the usual approach in a 
introductory programming course is the teaching of the basic concepts of programming tied to a 
programming language. But robots generally use their own programming language with its own features. 
That leads to a situation where the specific programming language constraints the general programming 
language for the instruction of programming concepts. Besides, there is a lack of experience in teaching a 
programming course with robotics and it is complicated to integrate this new experience into the 
traditional learning environment. 

Our approach to the robots is somewhat different: We think that robots can be used to concretize 
algorithms; their behavior is emulated by using robotics or other real world objects. In addition, 
concretization makes easier to link the abstract knowledge of the usual Computer Science teaching to 
everyday issues so that the students can apply a whole set of already known resources (i.e. problem 
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solving skills) to compose new knowledge and hence to foster their learning [RESNICK, M., BERG, R., 
EISENBERG, M. 2000]. In this way, concretization can be easily adapted to different learners and 
cultural contexts. When students design a concretization of an algorithm they need to analyze it more 
carefully in order to express the key features of the algorithm, but they do not have to focus on 
implementation details. While robots move in the real world representing the algorithm, students get 
immediate visual or sensory feedback and gain insight into different features of the algorithm, such as its 
efficiency. In this fashion, students can compare among different algorithms and enlarge the assimilation 
of them into a higher maturity level [LAWHEAD, P.B., DUNCAN, M.E. et al. 2003]. 

At this stage we have implemented a few sorting algorithms that can be concretized by the robots. 
Besides, with this work, we are developing a spatially and behaviorally oriented framework in which 
students can interact with robots and, at the same time, learn the basics of algorithms watching how 
robots behave with the algorithm designed by the students themselves; thus students would not need to 
program the algorithm with a high level programming languages but they could concentrate on the main 
aspects of the algorithm (invariants) [HUNDHAUSEN, C., and DOUGLAS, S. 2002]. 

We have carried out a preliminary evaluation with 13-to-15-year-old students. Through the test we 
gather information about how students understand the operation of a sorting algorithm by means of 
questions and practical tasks. The analysis of the results shows that students learn how one algorithm 
works, although further tests and analysis must be done to determine how the concretization should be 
best utilized. 

2 FROM ALGORITHM VISUALIZATION TO ALGORITHM CONCRETIZATION 

2.1 INTRODUCTION TO COMPUTER SCIENCE INSTRUCTION 
We have claimed before that one of the main difficulties that novice students in Computer Science 

face is the understanding of algorithms. It is somewhat surprising because current students have been 
living in a more and more computer-based environment, so maybe they might grasp easier how algorithm 
works. But it does not seem to happen this way. 

Students indeed are living among computers. But their experience is mainly focused on how 
computer programs interact (i.e. video games, web browsers, people) and particularly on how the 
students interact with them. The idea of interaction relies on the concept of an immediate feedback. 
Besides this, the computer programs are concurrent: apart from the running of a given computer program 
(more precisely, a thread), other things are happening at the same time (i.e. a word processor). Likewise, 
students are visually oriented: TV, movies and game consoles are widespread around the world. 
Eventually, the structure of the text-based information has dramatically changed with Internet and the use 
of hyperlinks and their multiple ways of connecting concepts (opposite to a linear structure of concepts). 
To sum up, the students’ current point of view about Computer Science is dynamic [ANDREA, L. 1997]. 

However, all these changes are not yet present in the paradigm of Computer Science instruction: 
teachers mainly use verbal explanations combined with blackboards or slides, which consists of text-
based information and in a rather static, poorly interactive fashion. As we have stated before, a natural 
approach to algorithms directs attraction to show how the information (data flow, control flow) evolves 
over time. 

Sometimes students feel discouraged because they sense that what they are studying is “far from 
reality”: they don’t know the potential uses of that knowledge or how to apply that knowledge. 
Concretization makes the identification of this link easier. Students are more easily involved and 
motivated and their learning will be fostered [JADUD, M. 2000]. 

2.2 ALGORITHM ANIMATION 
Algorithm animation illustrates the behavior of an algorithm by producing an abstraction of the data 

(how data evolves) and the control flow (a representation of all possible sequences of events) of the 
algorithm. The main focus has been on visualization of algorithms constrained to computer screens. The 
results of the research have been questionable. There are studies that support as well as studies that do not 
support the use of visualization in algorithm teaching [FLEISCHER, R., KUČERA, L. 2002]. 

The key feature for the research that supports visualizations has been the level of engagement of the 
students which induces to achieve better results. With our work we want to transfer the abstract concepts 
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from computer screens to the physical world. Concretization of algorithms seems to provide a higher 
level of interaction and engagement potential for the students, allowing them a more hands-on style of 
learning [KERREN, A. and STASKO, J.T. 2002]. Besides, concretization gives the students an 
immediate feedback which allows them a deeper insight of algorithm’s activity and allows them to 
concentrate on the main features of the algorithm (invariants), and not in the programming details. This 
also elaborates on the common idea of interface in Computer Science education. Instead of interacting 
with keyboards or computer screens, students can interact with their ideas in a different way: they can 
even touch them [LÓPEZ, J., MYLLER, N., SUTINEN, E. 2004]. 

2.3 ROBOTICS IN EDUCATION 
As the price and complexity of robots have decreased in the last years, their use in Computer Science 

education has grown in different subjects such as AI, distributed and parallel programming, etc. 
[SCHUMACHER, J., WELCH, D., and RAYMOND, D. 2001] [KLASSNER, F. 2002]. The central idea 
has been that robotics could motivate students to learn but the results have been contradictory [FAGIN, 
B., and MERKLE, L. 2003] [WOLZ, U. 2001]. On one hand, there is the novelty and fascination of this 
new tool; on the other hand, the lack of experience and integration into a traditional learning environment. 
Another approach has been to simulate the robot’s behavior through computer software and after that 
introduce either real robots or another programming language [FAGIN, B. 2003] [PATTIS, P. 1981]. 

Our approach is somewhat different. We try to make the abstract subject, such as algorithms, more 
concrete through robots which behave according to the given algorithm. Students, for now, watch and 
interact with the robots only affecting the external factors, such as their placement or appearance. This is 
closer to visualization of the algorithms where students can mainly affect the input sets or appearance of 
the algorithm. With the framework we are developing we want to go further in this approach in order to 
enable the students to concretize their own algorithms. For instance, within a GUI they can drag & drop 
an image representing the robot to control its location. Then the students can design a high level 
behaviour by sending and receiving messages from one robot to another 

3 ALGORITHM CONCRETIZATION WITH ROBOTICS 

3.1 TECHNICAL OVERVIEW 
In this prototype phase, we decided to use a LEGOTM Mindstorms RCX unit as a base for the robots. 

This gave us more freedom to easily modify and program the robots with a LEGOTM robotics kit. The 
RCX units can send and receive signals through infrared (IR) transceivers. The concretized algorithms 
were developed using NQC (Not Quite C) and the LeJOS (Lego Java OS) API to evaluate the ease of use 
of these systems. Although we have used these environments for this first system, we are not restricted to 
their solely use only: any robot with a programmable interface can be used, such as Sony TM AIBO robots 
or cricket technology [RESNICK, M., BERG, R., EISENBERG, M. 2000]. 

At this point, we decided to concentrate on data flow oriented visualizations rather than concretizing 
the control flow of the algorithm. This is partially due to the fact that the latter would involve too many 
details for a novice student. 

There were two different kinds of options to implement the communication and computation between 
the robots. The first (centralized) possibility was to compute all the commands in the control unit and 
then send them to the robots. The other (decentralized) option was to distribute the same behavior to all 
robots and depending on the placement they would act differently. We introduce briefly both approaches 
and then explain our decision. 

The first idea was to split up the algorithm itself and the associated behavior: a control unit 
implements the algorithm (e.g. sorting algorithm) with communication commands inserted within it. 
Those commands tell the rest of the robots what to do and when; these commands are closely related to 
the interesting events in algorithm visualization [KERREN, A. and STASKO, J.T. 2002]. Robots 
communicate with each other while the control unit keeps track of what is happening in order to achieve 
synchronization. 

The second possibility was a decentralized approach, where a copy of the algorithm would be 
running on every robot. Therefore, none of the robots would have control on the overall behavior but all 
the robots should be rather autonomous. This approach introduces new kinds of problems of distributed 
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computing and parallel algorithms that need to be solved; these are far from our original aim. However, 
this could lead into new possibilities to visualize parallel or distributed algorithms. 

We decided to use the first approach, centralized computation, because it is more feasible with robots 
with many limitations, especially in sensing. With this approach, the control can be kept simple. The main 
problem is reduced to the design of a protocol between the control unit and the robots and the 
synchronization of the messages. 

We use one of the RCX units as the control unit commanding the robots in order to be able to execute 
the algorithm concretizations without an additional PC. The protocol was designed to be as simple as 
possible. The robots were given a unique id, to which only that robot reacts. That id represents the 
location of a robot in an array. After the control unit makes a connection to a robot by sending its id, that 
robot is given a role and it will act according to the given role. The robot sends a message to the control 
unit after finishing the acting of the role. Then the control unit assigns new roles to other robots and the 
algorithm’s execution goes on (see Figure 1). 

 

 
Figure 1 – Different stages during to event of comparison. 

 
To sum up, each relevant operation (i.e. interesting event) in algorithms can have a new semantics, 

more concrete, less abstract, which symbolizes or represents the activity of the algorithm by means of 
robots’ behaviour. For instance, in a sorting algorithm, comparison between two variables can be 
concretized as an event where two robots move towards each other, communicate their values and 
rearrange themselves if necessary. This corresponds to the visual semantics of the operation in algorithm 
visualization. 

3.2 THE EXAMPLE ALGORITHM AND IMPLEMENTATION DETAILS 
In this first version of software, we have implemented two algorithms: selection sort and bubblesort. 

Here we briefly explain the technical issues concerning the implementation of the bubblesort algorithm. 
The idea of bubblesort consists of advancing through an array and finding the first minimum element then 
the second and so on. Every time two items are not sorted, their values are swapped. 

 

 
Figure 2 – A possible implementation of bubblesort algorithm. 

 
The concretization of the algorithm goes as follows: the control unit executes the algorithm similar to 

Figure 2 and on the interesting events it calls the robots. The array of items is concretized as a line of an 
arbitrary number of robots (see Figures 1 and 3). In this algorithm, the point when the control unit calls 
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the robots is in the comparison between the elements of the array, in the if-condition (line 3 in Figure 2). 
The control unit calls a specific robot by its id and waits for its answer. 

 

 
Figure 3 – Robots in the line before the sorting. 

 
When taking the viewer into account, there will be a robot on the left and right hand side during the 

comparison, with different movements. Thus, we differentiate between these two different behaviors or 
roles: the left role and the right role. Furthermore, every robot can be assigned with the left or right role at 
any step of the algorithm. After a robot has been called with its id, the control unit assigns the correct role 
to it. Once being called and given a role, robots move forward and turn according to their role, either to 
the right or left in order to be compared (see Figures 1 and 4). Every robot has a weight or value that 
represents an array item. In that moment, the robots must compare their weights in order to know if they 
are sorted or not. The robot on the left communicates its value, as expressed by the external property such 
as height or weight, to the robot on the right and it compares the value with its own value. If the values 
are already in the right order, i.e. the robot on the left has a value less or equal than the robot on the right, 
a FALSE message is sent back and they return to their original locations. If the values are not sorted, i.e. 
the robot on the left has a greater value compared to the robot on the right, they exchange their ids and 
their locations afterwards. Finally, in both cases, when robots turn back to go to the line, they send a 
DONE message to the control unit. 

 

 
Figure 4 – Robots' locations during the comparison state. Robot in the middle has the left role and robot 

on the right has the right role. 
 
After receiving two DONE messages, the control unit can continue to the next round in the iteration 

of the inner loop. If the control unit calls the right robot and does not receive any answer, that absence is 
interpreted as the end of the inner loop. Taking a look to the Figure 2, when j is equal to k, the algorithm 
is finished and the control unit notifies the robots by sending an ACK message that will terminate their 
execution. Figures 5 and 6 illustrate the protocols between the control unit and the robots. 
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Figure 5 – Protocol between the control unit 
and the robots in the bubblesort algorithm. 

 
Figure 6 – Protocol between robots in the 

bubblesort algorithm. 
 
With this design, concurrency and interaction among robots are showed, and a holistic, visual 

feedback is given to the novice student. Apart from this, there are different kinds of information that the 
control unit and the robots should have. The control unit should have implemented the algorithm and 
know all the commands that are available from the robots. Additionally, it must know when to send those 
commands to the robots during algorithm execution. On the other hand, the robots should know their id, 
the commands and their behavior depending on the given commands. This is also a concretization of the 
concept of object: data and methods, data (weight) and behavior. 

3.3 IMPLEMENTATION EXPERIENCES 
The implementation of the system was straightforward as far as the programming part was 

concerned. However, physical restrictions and differences between the RCX units and its components 
such as motors introduced new kinds of problems. In particular, it was difficult to achieve movement 
control. There were several physical factors to take into account when considering elementary movements 
and precise turning: the power of motors, the different response times depending on the battery power and 
friction from the floor just to mention a few. This led us to store physically related information, such as 
the distance between robots and the speed for backward and forward movement and turning around into 
the robots. 

Another issue was the tuning of the synchronization times for sending and receiving the messages. It 
would help if robots had another means for communication than infrared ports because infrared 
communication requires line-of-sight to work properly. Moreover, the environment needs to be free of 
other infrared interferences because IR transceivers are quite sensitive to noise and the communication is 
very slow. 

Java and LeJOS API were more applicable in this context. The richness of LeJOS API made the 
development of the system easy. However, we do not think that first or second year students should do 
their own concretization with Java language because of the low level implementation requirements. Thus 
they need a separate environment to work with, otherwise most of the effort is put into the programming 
and not into the design of the concretization. 

There were no major problems when implementing the system with NQC. However, we think that 
NQC is a restricted language compared to Java and can cause problems in a later development. 
Especially, if we change to another robotics system it is more likely that a Java API is available for that 
system. 

4 EVALUATION 
In this section we introduce the empirical evaluation and the preliminary results from the experiment 

done with robotics concretization. We were using a single sorting algorithm, bubblesort. We used 
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different methods of teaching during the experiment. We collected only qualitative data. In this section 
we describe the lesson and how the students answered the questions. 

4.1 METHOD AND MATERIALS 
The experiment was carried out with five 13-to-15-year-old students in an after-school computer club 

[ERONEN, P.J., SUTINEN, E., VESISENAHO, M., VIRNES, M. 2002]. All of them knew the basics of 
programming but only one of them had studied the bubblesort algorithm before. The empirical data was 
collected with a questionnaire and by video taping the lesson. 

First, students were introduced to the problem of sorting with five boxes in a row having different 
sized items inside of them, presenting an unordered array. Students were asked to sort the items. 

Secondly, the concretization of the bubblesort algorithm was introduced to them with four robots. 
After the initial view of the algorithm, they were asked to predict how the algorithm proceeds in four 
different situations not presented before. All situations concerned the swapping of the places in the array. 
After that they were asked to explain the procedure of the algorithm. They could explain the predictions 
and the algorithm either by writing or drawing. They were then given the correct answers. Finally, they 
were asked to sort the items in the boxes according to the introduced bubblesort algorithm and try to 
describe ways to make the algorithm and the presentation with robots better. 

4.2 DISCUSSION OF THE RESULTS 
At the beginning when students were asked to sort the items in the boxes they used an ad hoc method 

to do it. They did not think about the constraints that an algorithm normally has. When they were given 
the constraint of just opening two boxes at once the sorting was closer to the sorting algorithm but still 
some ad hoc methods of determining which box to open were used and the process was not systematical. 

During the concretization, the students watched eagerly how the robots work according to the 
bubblesort algorithm. After that, students were shown four different scenarios of the sorting with robots 
and they were asked to explain the next step of the algorithm. All students answered correctly to three 
questions. In one of the questions two students were wrong. All students used drawing. 

When asked to describe the algorithm two students gave the correct explanation. One student wrote 
the first round of the inner loop correctly and then just said that it would continue in the same way so we 
cannot say for sure if he had understood the algorithm. The two other students gave either vague or 
incorrect explanations. 

In the end, the students were asked to sort the items in the boxes according to the bubblesort 
algorithm. The algorithm was repeated step-by-step so that each of the students made the next step of the 
algorithm in turns. They were eagerly advising each other how to proceed. They were discussing the 
algorithm with each other and they repeated the procedure of the algorithm correctly in a new situation. 
This shows that at least some of the students understood the algorithm correctly. 

We also asked the students what they would like to enhance in the current algorithm and system. One 
of the students gave a suggestion that the computation robot should get hold of all the weights of the 
robots and then just pick up the smallest amount of robots to make the sorting faster. Even though this 
proposed method does not make the actual sorting algorithm faster but the concretization of it, it is in a 
line with two other students who said that the robots should be faster which is true in both communication 
and movement. Four of the students liked the experience with robots and one did not explain her feelings 
in any way. 

5 CONCLUSION AND FUTURE WORK 
We have introduced a novel way to teach algorithms through algorithm concretization. This approach 

combines algorithm visualization and robotics to make algorithms alive in the real world. Thus students 
can construct new knowledge by observing the real world objects. This connects their previous 
knowledge to the data structures and algorithms at a more concrete level and promotes learning in a 
constructivist way [BEN-ARI, M. 2001]. Another supported method is learning-by-doing because 
concrete matters make the abstract concepts such as the data structures and algorithms easier to grasp. 

Algorithm concretization with robotics can give many kinds of possibilities to design algorithms in a 
creative way and get new insights to the most vital parts of the algorithm and develop the algorithms 
further through them. This can for instance lead to a classroom activity where students in teams could try 
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to harm a certain algorithm and the winner team is the one that can find the most vulnerable part of the 
algorithm. On the other hand, this kind of naturally distributed environment gives interesting possibilities 
to concretize parallel and distributed algorithms and let the students build their own concretizations of 
them. Moreover, these algorithms can be more carefully analyzed in real world settings than with a 
software simulator. 

As stated by Hundhausen and Douglas [HUNDHAUSEN, C., and DOUGLAS, S. 2002], expert-
made visualization materials do not necessarily promote learning any better than materials made by 
students. This leads to the idea of developing an environment where students could develop their own 
concretizations. This should be made easier than just coding a new algorithm and the behavior of the 
robots through languages like Java or C. To accomplish this, a behaviorally and spatially oriented 
language and a graphical user interface through which students could assign movements to each role and 
robot should be designed. This can be achieved by standardizing the interface to the robot’s controls 
leaving the appearance and functionality of the robot still modifiable. 

At this stage, we have not yet done a large scale evaluation of the current system in a classroom 
setting. However, we have shown the concretizations to small groups of students that have been eager to 
interact with the robots. The results have been promising and given us clear directions how to proceed 
with our work. Thus, one of our future plans is to do a proper evaluation of the system and teach 
algorithms by concretization. 

Learning algorithms through concretization is an approach that needs to be developed further to find 
new means to illustrate the execution of the algorithms. This work is the starting point for concretization 
tools that can make students’ learning of algorithms explicit and interesting. The added value of 
concretization compared to visualization is its hands-on character which has an especial appeal to a 
certain type of student. Furthermore, concretization through robots supports diverse learners and learning 
styles or even different cultural contexts because robots’ behavior and appearance are easily adaptable for 
the current situation. In this way each student can utilize the tools in a way appropriate to him/her. 
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