
Enhance students’ motivation to learn programming
by using direct visual feed-back

1Lars Reng, 2Lise Busk Kofoed

Department of Architecture, Design & Media technology, Aalborg University, Denmark,
lre@create.aau.dk1

Department of Architecture, Design & Media technology, Aalborg University, Denmark,
lk@create.aau.dk2

Abstract
The technical subjects chosen are within programming. Using image-processing algorithms as
means to provide direct visual feedback for learning basic C/C++. The pedagogical approach is
within a PBL framework and is based on dialogue and collaborative learning. At the same time
the intention was to establish a community of practice among the students and the teachers. A
direct visual feedback and a higher level of merging between the artistic, creative, and technical
lectures have been the focus of motivation as well as a complete restructuring of the elements of
the technical lectures. The paper will present the test results based on over 200 students,
gathered over a period of three years.

The paper will explain different steps of the new programming courses in detail, and relate
students test data to each of the initiatives causing the leaps of improvement. Furthermore the
students’ technical abilities and enhanced balance between the interdisciplinary disciplines of the
study are analyzed. The conclusion is that the technical courses have got a higher status for the
students. The students now see it as a very important basis for their further study, and their
learning results have improved to a satisfactory level seen from the study board’s point of view.

1. Introduction
During the last decade there has been an amazing development in new media and media-
platforms. The industry has changed and so has the demand for the engineers working in the
content related fields of the many fast growing areas. As a natural response to the new demands
of the industry many universities are trying to establish new educations to close the void, by
creating a new type of engineer that can meet the new challenges from industry [2].The
Medialogy master and bachelor programs was established at Aalborg University approximately
eight years ago. Medialogy is a multidisciplinary education with a goal to create a new type
engineer with a strong skillset and understanding bridging from the latest media technologies in
both software and hardware, to new and old artistic disciplines and to get a deep understanding
of the human perceptual system 2. Traditional technical engineers seem to lack an understanding
of both the human cognitive system and the techniques and problems linked to creating high
value media content. Equally problematic, is the artists and media directors lack of knowledge of
how technically challenging their many ideas are for the engineers to develop. The candidates
from Medialogy should be able to close this gap, being a valuable asset for any company as a
mediator or part of any of the three groups.

The paper investigates the problems of teaching highly technical topics to students who are
neither technically skilled nor keen on improving their skills in these topics. The relatively new
interdisciplinary engineering program; Medialogy within the technical faculty at Aalborg University,
have in the last years been drawing a large amount of students into the void between the many
creative fields of media, art, design and the technical engineering disciplines. Whereas the
numerous engineering educations have a great appeal on those students, who are both inclined
and passionate about highly technical topics, Medialogy seem to have a great appeal for those
students who are passionate about the creative side of media, art, and design. Since the start of
the new Medialogy study 6-7 years ago, it has been evident that the level, of the more artistic
minded part of student’s technical side was far from the desired goal of the program. Studying
Medialogy implies a certain level of mathematic and programming, which has been a great

problem for many students. The more artistic minded students seem not to be interested in those
technical subjects and when they start the Medialogy study they cannot see the reason for
learning technical subjects with the results that many students have stopped their study. So a big
challenge for the program has been to find a pedagogical approach, which could motivate an
interest for the technical subjects and avoid students leaving the study. The authors of this paper
have, with full support from the head of studies, taken the initiative to fundamentally change the
way technical topics are being taught.

All educations under Aalborg University are following the Aalborg University pedagogical model
based on Problem Based Learning (PBL) principles.[1,3] According to the Aalborg PBL model
students would every semester use approximately half of the study time by working in their group
with a project where they have to choose and solve a problem within a field selected from the
overall theme of their semester. The other half of the time would be used on courses related to
the project topic or as a prerequisite for courses for an upcoming semester. So each semester
students would have to analyze the semester theme, find a relevant problem they want to solve,
use or develop suited theories, find useful methods, design a product, and after thorough testing
evaluate if the problem had been solved.

After the first three years it became evident for Medialogy that the type of engineer students that
were attracted to Medialogy, were less technical inclined and prone to learn hard technical topics.
So the consequences were that the teachers expectations to the students’ technical level were
lowered, and some areas where a technical skillset was the desired goal only a superficial
understanding was expected. It became clear that the education needed to critically evaluate the
technical parts of the program, and the result showed an urgent need for improvement of the
technical courses, especially programming.

Four years ago the first author of this paper was hired to teach programming on the bachelor
level of Medialogy. The paper will describe the stepwise transformation of the course in the
attempt to raise the students’ technical level to the original desired goal.

2. Methods
We have used the case method combined with action research. All four programming courses
have been followed and analysed during four years. The courses have been developed during
the process according to previous experiences and results. It has been a process with
characteristics from continuous improvement (CI) processes, and the evaluation processes have
been inspired from CI evaluation methods [9]. The data are course assignments, exams,
interviews with students and project supervisors.

The pedagogical approach is based on the PBL principles [7] and one of the main focuses in the
courses is to relate the course content to understandable problems for the students so they could
see the purpose of the learning. Another teaching strategy was to emphasise and support
reflection as a mean for understanding [8] and to use students previous experience either from
programming courses or from related areas to support their learning process and to keep
motivation [3,4]. We have used experiments with inspiration from Donald Schôn [5,6] when
developing different aspects of the courses. But one of the most important factors was to develop
course material and course content “just-in-time”.

3. Programming at Medialogy
The bachelor program of Medialogy was originally only two year education since the students
could apply after taking a two year long multimedia college education, which would give them the
needed merit to skip the first year of a three year bachelor education. The programming part of
the education was therefore split evenly between the third to sixth semester. The third semester
would introduce the basic concepts of programming, the fourth would add the object oriented
programming (OOP) concepts, the fifth adds 3D graphics programming with OpenGL, and the
sixth finally introduces artificial intelligence programming (AIP).

This paper will focus on the changes made to the 3rd semester C/C++ programming course. The
students are on the 3rd semester introduced the basic concepts of procedural programming. The
curriculum includes elements such as data-types, variables, loops, branching, arrays, structs,
functions, pointers, searching & sorting, linked lists, trees, etc. All object oriented programming is
not taught until the 4th semester.

3.1. Detecting the problem (Spring 2007)
	

The first course to teach was the Object Oriented Programming course (OOP). The previous
teacher had left rather suddenly a month before with no desire to support the successor.
Therefore no exchange of knowledge and experience from previous years was given. And as a
direct result here of, the course was designed and run in a very traditional engineering education
style. The course, which was the students’ second programming course, was split in 15 lectures
of 2x45 minutes of auditorium lecturing and 2x45 minutes of assisted exercises; in the students’
own group rooms.

It rather quickly became evident that only a fraction of the students mastered the basics of the
first programming course ending only a month before. As a direct result, it was very hard to focus
the teaching on the desired curriculum.

To investigate if this problem had occurred before, and also how well the students preformed at
the end of their bachelor, the entire 6th semester Artificial Intelligence Programming course (AIP)
was observed with focus on the students’ abilities to apply basic programming to solve the
exercises. The results were shocking. From a whole semester of 6th semester students only one
student dared to attempt to solve the final free competition exercise. So even though his simple
artificial intelligence did not work perfectly, he still won.

Numerous meetings with the coordinator of studies concluded that the last four years of changing
teachers and choice of programming language had proven that more extensive changes would
be required in order to break the reoccurring problem with a weak technical level of the majority of
the students. High levels of freedom to initiate new ideas were therefore granted. Also, it was
agreed that the requirements to pass the exam should be raised greatly the first year, and then by
another 10% the following three years, as the new improvements to the course hopefully would
gain full effect.

3.2. Raising the bar (Fall 2007)

Interviews with the students had revealed that many had been able to pass the 3rd semester
programming exam using a high level of memorization of blackboard examples. In order to
prepare the students for the challenging programming courses on later semesters, the severity of
the 3rd semester course had to be raised. This would clearly result in a much higher number of
failed exams and students dropping out, unless a better way of teaching the curriculum was
found.

The students had for the last four years, since beginning of the education, had a course on the
3rd semester in image processing and they had built an interactive installation using this as part of
their semester project. This had however been done with tools such as EyesWeb, where the
details of the different operations were hidden and handled by the tool. In order to bring more
focus on the programming part of the semester it was decided to remove the tools, and instead
the students were required to program the entire project artefact in C/C++. The open computer
vision library (OpenCV) was all the external software they were allowed to use.

The programming course was run in parallel with the early stages of their semester project and
the image-processing course. The programming course was done in a classical style; using two
hours of lecturing and another two for exercises.

The students came poorly prepared to the programming lectures and almost half of them seemed
to lack any motivation to learn programming, or do the exercises required. More than half the
students were unable to apply what had just been taught in the lecture minutes before the
exercises. There was almost no flow in the exercises, and most students seemed to be stuck as
soon as the teaching assistants had left them.

The semester project artefacts were programmed by the project groups in C/C++. (Each project
group had 4 -6 students), Project exams unfortunately revealed that only the strongest
programmer in the group was able to explain the code, indicating that not all students had
benefitted from the extended programming practice possibility which work on the semester
projects should have offered. On the other hand those that had programmed major parts of the

projects could explain in a very high level of detail how the different image-processing algorithms
affect an image. The programming exam questions were increased greatly in level of difficulty, as
agreed upon. This unfortunately resulted in more than 50% failing the course. (See figure 1 in the
result section below).

3.3. Merging the courses (Fall 2008)

Interviews with supervisors and skilled students had the previous year indicated that
programming all the algorithms from the image-processing course would greatly improve the
students’ understanding of how and why they worked the way they do. Another interesting
observation done during the breaks of the programming courses, was that many of the students
who lacked the motivation to learn programming, was using their breaks to continue work on the
more artistic courses. It was therefore decided to merge the image-processing and programming
courses, and to use all the filters used in the more artistic classes as programming exercises. If
the more artistic minded students were asked to recreate some of the effects they liked from
software such as Adobe Photoshop, it might increase their motivation to understand how these
filters were programmed, and thereby learn more programming. Another important benefit was
that changes in images often seem to make more sense for the students than only numbers from
a program. It was therefore decided to completely merge the two courses: programming and
image-processing.

Instead of starting with a two hours lecture and then two hours of exercises the students were
taken out of the auditorium and into a large seminar room. This allowed the lecture- and exercise
time to be interleaved in 15-20 minute intervals, and thereby allowing students to implement
every new method directly after it had been presented and discussed. The teacher was during
lecture time close to the students and could move around between students. It was easier for
students to ask questions, but also for the teacher to ask if the students had understood what was
going on.

The effect of this merger did according to interviews with students and supervisors have a
positive effect not only on the students’ knowledge on image-processing but it also resulted in
better semester project artefacts. The level of the programming exam was raised by
approximately 10%. Even under these conditions the results of the exam indicated that the
changes from the previous year have had a positive effect on the level of the students’
programming skills. (See figure 2 in the result section below).

3.4. The semester spirit (Fall 2009)

A phenomenon that is daily discussed among the teachers but still is a bit of a mystery is the
semester spirit. Even though we know there is a great difference between the best and weakest
students and a great difference between the most and least dedicated students, everybody
knows that semesters can be very different. Something can make students at a whole semester
accept lazy behaviour or they work harder than those a year before them. Even though only
minor changes were added to the image-processing and programming course, the students in the
fall semester seemed to be less motivated and more reluctant to implement all the exercises. This
had an overall effect on both semester projects and the programming exam. Again the severity
level of the programming exam had been raised by approximately 10%. (See figure 3 in the result
section below).

3.5. Focus on the artists (Fall 2010)

In order to do everything possible to avoid another year with a collective lack of motivation,
several of the master students that had passed the exam two years earlier was invited to talk to
the new 3rd semester in the very beginning of the course. Not only the strong programmers were
invited, a few very artistic minded master students presented how they used their programming
skills to improve their work daily. The aim of this special effort was to try and motivate”the hard to
reach” and more artistic minded new students. Another initiative added this year was that the last
part of the image-processing course was delayed and given at the time where the students were
implementing their semester project artefact. Instead of traditional course teaching, these hours
were used as an open support to any image-processing or programming problem related to the
semester project.

The programming exam had the desired level of severity at approximately another 10% harder
than the year before. The results were better than expected, (as shown in the result section
below).

4. Results

In Denmark students are graded after the 7-scale system. The grades -3 and 00 are failing
grades. The grades 02, 4, 7, 10, and 12 are passing grades. (12 = A). The below four figures
depicture the total sum of grades given according to the 7-scale. The x and y –axis represent the
grade and frequency for the fall courses 2007 - 2010.

Figure 1: Programming grades 2007

Figure 2: Programming grades 2008

Figure 3: Programming grades 2009

0	

5	

10	

15	

20	

-­‐3	
 00	
 02	
 4	
 7	
 10	
 12	

0	

5	

10	

15	

20	

-­‐3	
 00	
 02	
 4	
 7	
 10	
 12	

0	

5	

10	

15	

20	

-­‐3	
 00	
 02	
 4	
 7	
 10	
 12	

Figure 4: Programming grades 2010

5. Conclusion
The merging of the courses programming and image-processing were done as a natural support
to the students new requirement of having to implement an image-processing based interactive
artefact by the use of C/C++ in their semester projects. When this initiative was approved four
years ago there were none or little actual programming in the projects on the bachelor semester
(6th). The artificial intelligence programming course was rarely used in any semester projects.
Today this has changed dramatically. Several bachelor groups are today implementing advanced
algorithms for artificial intelligence in their semester projects. Numerous projects are being
programmed in industry standard game engines, and students are starting to program full-scale
commercial productions in their early master semesters. The ideas of improving the course have
been good, and the use of programming in the students semester project had supported the
motivation as well as the learning.

The direct visual feedback achieved by using images as output for the exercises in the
programming course, has been observed as a strong motivator and potent debugger for the very
graphical minded students at Medialogy. The direct visual feedback is not the only initiative
applied to the 3rd semester programming course .For the moment it is therefore not possible to
conclude the effect based on the exam results depicted in the result section.

References:

1. Busk Kofoed, L. Nordahl, R. (2007) Learning Lab – teaching experienced students PBL. In
proceedings of the 18th Conference of the Australasian Association for Engineering
Education, Melbourne; Department of Computer Science and Software Engineering.
University of Melbourne.

2. Nordahl, Rolf and Kofoed, Lise B. (2008). Medialogy – design of a transdisciplinary education
using problem based learning. In Proceedings form SEFI 36th Annual Conference., Aalborg.

3. Kofoed, Lise; Hansen, Søren ; Kolmos, Anette.(2004) Teaching Prosess competencies in a
PBL curriculum.In:The Aalborg model : progress, diversity and challenges. (Eds. Kolmos,
Anette. Fink, Flemming K., Krogh, Lone. Aalborg: Aalborg University Press.

4. Weick, K. E., Sutchcliffe, K. M., &Obstfeld, D. (2005). Organizing and the process of
sensemaking. Organization Science, 16(4), 409-421.

5. Schön, Donald, D. (2009) The Reflective Practitioner. How Professionals Think In Action.
Ashgate Publishing Limited, England.

6. Schön, Donald, D. (1990) Educating the Reflective Practitioner – Toward a New Desogn for
Teaching and Learning in the Professions.Jossey – Bass Publishers, San Francisco.

7. Graaff; E. de and Kolmos, A. (2003) Characteristics of problem-based learning: International
Journal of Engineering Educations. 5(19). 657-662

8. Cowan, John (2006). On becoming an Innovative University Teacher – reflection in Action.
Open University Press, McGraw-Hill Education.

9. Jørgensen, Frances; Kofoed, Lise B. (2007) Integrating the development of continuous
improvement and innovation capabilities into engineering education. In: European Journal of
Engineering Education. 2007; Vol. 32 nr 2. Pp. 181 – 191

0	

2	

4	

6	

8	

10	

12	

-­‐3	
 00	
 02	
 4	
 7	
 10	
 12	

