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Abstract 

The response of structural systems subjected to dynamic loads can traditionally be evaluated in 
time domain or in frequency domain. Solution methods based in frequency domain have been in 
development in recent years. The choice of the method depends on the physical properties of 
the system. In those with frequency-dependent physical properties or with hysteretic damping, 
frequency domain analysis is recommended. The frequency domain analysis has become 
common use only after the advent of the FFT (Fast Fourier Transform) algorithm developed by 
Cooley and Tukey [1], for substantially reduce the computational effort in evaluating the DFT 
(Discrete Fourier Transform), doing it competitive with the time domain methods. Thenceforth, 
the frequency methods have been receiving significant contributions in the search for efficiency. 
In its latest edition Clough and Penzien [2] present a detailed treatment of analysis in the 
frequency domain. Ferreira et al. [3] present an interesting comparison of the time and 
frequency formulations for dynamic analysis. Although time domain methods are easily 
assimilated by engineering students, the same does not happen to frequency domain methods, 
especially to civil engineering students. The goal of this article is to introduce a pedagogic 
comparison between these two important methods to the solution of structural systems 
subjected to dynamic loads, in order to make it easier for civil and mechanical engineering 
students to learn this subject. 
 
 

1. Introduction 

The response of a structure subjected to dynamic loads can be basically calculated by two 
ways: by solving equations of motion in time or frequency domain. When the system 
parameters are frequency-dependent, the procedure in the frequency domain is more suitable. 
As an example, one can cite the interaction case of soil-structure systems in which stiffness and 
damping forces are frequency dependent. 
 



The frequency domain analysis has became of ordinary use only after the emergence of FFT 
(Fast Fourier Transform) algorithm, developed by Cooley and Tukey [1], because substantially 
reduced the computational effort in the DFT (Discret Fourier Transform) evaluating, making it 
competitive with the methods of time domain. Since that time, the frequency domain methods 
have been receiving significant contributions in search of its efficiency. Clough and Penzien [4], 
in their first edition with an excellent text about structural dynamics, presented some elements 
of structural analysis in the frequency domain. In their latest edition [2] there is a more detailed 
analysis in frequency domain. 
 
 

2. Equation of motion 

Consider a mass-spring system with one degree of freedom, subjected to a load p(t). The 
equation of motion is obtained from the resultant of forces acting on the mass, which are the 
very loading, the viscous damping force (proportional and opposite to the mass velocity), and 
elastic spring force (proportional and opposite to the displacement from the equilibrium 
position). If v(t) is the displacement at time t, m is mass, c is the damping coefficient, k is the 
spring elastic constant and p(t) is the loading at time t, then the resulting force is: 
 

� � = ��� ��	 = 
��	 − ��
 ��	 − ����	  ��  ��� ��	 + ��
 ��	 + ����	 = 
��	 (1) 

 

3. Steady-state response to a harmonic loading 

3.1 Time Domain 

The motion equation is a differential equation and its solution depends on the loading p(t). 
Obtaining solutions for the cases of loading sine and cosine, one finds the general solution to 
harmonic loading (i.e., a linear combination of sine and cosine with the same frequency). Thus, 

defining the natural system frequency as mkω =  and damping ratio as 
ω

ξ
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rewrite the motion equation as follows: 
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Adopting the loading tbt ωsen )(p =  with angular frequency ω , and defining the ratio 

ωω=β , one obtains the motion equation, which is given by: 
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Likewise, for a loading tat ω cos )(p = , the solution is: 
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And finally, when both loads act simultaneously, the general solution is: 
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3.2 Frequency Domain 

One can take profit of the periodic complex exponential function properties [5] and apply a 

"complex loading" tibet ω=)(p . Thus, the motion equation becomes: 
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whose solution is: 
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This response proved to be simpler, since it presents a single term. In time domain there are 
terms in sine and cosine. 
 
 

4. Response to any periodic loading 

4.1 Time Domain 

Any periodic loading (i. e., not necessarily harmonic) can be expressed in the form of Fourier 
series: 
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The system's response to that loading is given by: 
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4.2 Frequency Domain 

As follows, one also can express the loading as a complex Fourier series: 
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Nesse caso, encontra-se a resposta a cada componente da série, que valerá: 
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Where )(v tn  is a complex parameter, which means a real vector rotating in the complex plane. 

Hn is defined as follows: 
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The final response will be: 
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Where )(v tn  is real now, due to the presence of conjugate pairs. 

 
 

5. Response to a general loading 

5.1 Time Domain 

Consider the overall loading )(p t shown in Figure 1, below: 
 

 
 

Figure 1 - Impulsive Differential Load τd of an Overall Loading )(p t . 
 
Based on the approximate response of an impulsive load ττ d)(p , one can get the response to 
that loading, that will be: 
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This integral is a convolution integral (BRIGHAM, 1974), and the function )(h τ−t  is the unit 
impulse response, defined by: 
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where: 
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is the damped frequency of the mass-spring system. 
 

5.2 Frequencee Domain 

By use of Fourier transform and applying it in the motion equation, resulting in: 
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It is seen that the difference with respect to the complex loading is that now the integral 
boundaries are ∞−  and ∞ . Continuing, one has: 
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After the calculation of )(V ω , the response in time will be: 
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6. Systems with multiple degrees of freedom 

In systems with multiple degrees of freedom, the motion equations governing the displacements 
of the multiple parts of the structure correspond, in truth, to a matrix equation equivalent to the 
motion equation of systems with one degree of freedom. This matrix equation is given by: 
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where m is the mass matrix, c the damping matrix, k the stiffness matrix, all of N x N order, and 

)(tv&& , )(tv&  and )(tv  N x 1 vectors. 
 
The system will also have multiple natural frequencies of vibration, represented by the vector ωωωω: 
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These frequencies are the eigenvalues of a system of linear equations whose characteristic 
equation is: 
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The corresponding eigenvectors are the vibration modes: 
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These eigenvectors have the following properties for r ≠ s: 
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Both properties are in fact applications of the generalized definition of inner product between 

rv̂  and sv̂ . Therefore, it is said that different modes of vibration are perpendicular to each 

other, regarding to the mass matrix and the stiffness matrix. 
 
Moreover, for the same vibration mode, one has: 
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The values Mn and Kn are called, respectively, generalized mass and generalized stiffness. 
 

When defining the set of modal vectors by the expression
n
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orthonormalized regarding the mass matrix, because besides that, one has that 1=n
T
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Using those modal vectors like columns of a square matrix, the modal matrix Φ  is formed and 
is given by: 
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6.1 Decoupling the Motion Equations by Modal Superp osition Method 

The modal vectors are defined from the system eigenvectors, and therefore, are linearly 
independent. This fact allows use them to generate any vector v by linear combination: 
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where Y is a vector that contains the coefficients Yn, that are called modal coordinates. Making 
the substitution of v, as defined in equation (35), in the equation of motion for systems with 
multiple degrees of freedom, becomes: 
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that pre-multiplied by nφ , becomes: 
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Due to the properties of orthogonality, already presented, in relation to the mass and stiffness 
matrices, the previous expression can be written as: 
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Since c is assumed as proportional to the mass and stiffness matrices (Rayleigh damping). 
 
Thus, the system of equations becomes uncoupled and the structural system of N degrees of 
freedom with N equations, in physical coordinates, is transformed into N equations of one 
degree of freedom, in modal coordinates (CLOUGH and PENZIEN, 1993). When one finds the 
solution of each equation of one degree of freedom (i.e., each Yn), the general solution of the 
system in physical coordinates becomes: 
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Time Domain Solution 

The solution of each of the N equations in modal coordinates, when done in time domain 

through a convolution integral is: 
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Frequency Domain Solution 
Applying the Fourier transform to each of equations in modal coordinates, these are passed to 
the frequency domain, resulting in: 
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Finally, applying the inverse Fourier transform, each final response becomes: 
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8. Final considerations 

This article presents a comparison between the procedures of solving the equations of motion 

in time and frequency domain for structural systems subjected to dynamic loads. The main 

purpose was pedagogic, to present the solutions of the equations of motion in an interesting 

sequence, first presenting them in the time domain, and after in the frequency domain. The 

approach shows the advantages of solving the equations in the frequency domain of a very 

clear way, because the differential equations become algebraic and their solutions are 

obtained with simple numerical operations, with the only difference that involve complex 

numbers, which can be handled the same way that the real numbers. 
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