
A TCP/UDP PROTOCOL VISUALIZATION TOOL: VISUAL TCP/UDP
ANIMATOR (VTA) 1

Chunhua Zhao2and Jean Mayo3

Abstract - The TCP/UDP/IP/Ethernet protocol suite is com-
monly covered within an undergraduate curriculum. Often,
this is the first exposure students have to a network protocol.
We have found that students have difficulty understanding the
unique functions of these protocols and how the protocols are
related. This is due at least in part to the fact that packet
specification and construction takes place within the operat-
ing system, while covering a typical operating system proto-
col stack implementation would be beyond the scope or time
constraints of many of these undergraduate courses. In order
to address this problem, we have written a visualization tool
that illustrates the operation of TCP and UDP over the IP and
Ethernet protocols using real packets captured live from the
network or stored in a file. The tool provides several views of
captured data that, when used individually or in combination,
illustrate the operation of these protocols.

Index terms - Network protocols, visualization, socket pro-
gramming

MOTIVATION

An undergraduate curriculum is likely to include coverage of
the TCP/UDP/IP/Ethernet protocol suite. These protocols are
studied because they are in widespread use, because coverage
exposes students to the layered nature of network protocols,
and because knowledge of the protocols helps students to bet-
ter understand related issues in security, operating system im-
plementation, system administration, and network program-
ming.

In our experience, students have difficulty understand-
ing how the TCP/UDP/IP/Ethernet protocols are related, the
unique functions of each protocol, and the format and con-
tent of data packets that travel over the network. This is at
least in part due to the fact that implementation of the pro-
tocol takes place within the operating system, while studying
the operating system protocol stack code is beyond the scope
and time constraints of many courses that might include cov-
erage of these protocols. In order to help our students better
understand the operation of these protocols, we have written
a visualization tool, the Visual TCP/UDP Animator (VTA).

1Supported in part by the National Science Foundation under grant DUE-
9952509 and CAREER award CCR-9984682.

2Michigan Technological University, Houghton, MI 49931,
czhao@mtu.edu

3Michigan Technological University, Houghton, MI 49931,
jmayo@mtu.edu

VTA displays packets captured from the network in any
of severalviews. These include

• the Packet List View, that displays the contents of each
field of captured packets,

• the Connection Packet View, which displays all packets
passing over a TCP connection,

• theConnection Reconstruction View, which displays the
application data exchanged along a TCP connection as a
conversation with two participants,

• the Topology View, which displays an undirected graph
in which nodes correspond to machines and edges corre-
spond to the existence of a packet in which the connected
machines are source and destination,

• theTimeline View, which displays a space-time diagram
[8] between each pair of machines that communicate,and

• theTCP Status View, which depicts the current status of
a connection within a TCP state diagram.

The tool takes input either from file or from the network. A
user may specify that all data from the network be captured,
that data from selected active sockets be captured, or that all
data from a chosen application be captured. Regardless, an
additional filter, by source or destination IP address or port,
may be applied to the packet stream prior to display. VTA
can save a session for later replay. No special privileges are
required, and a user may see only data that passes over sockets
which she owns. VTA has been designed to run over the Linux
operating system.

RELATED WORK

There has been little work in the academic community on the
visualization of TCP and related protocols. Barr et al. devel-
oped the XSNIFF network monitoring tool with a graphical
X-Window based display [1]. XSNIFF displays statistical in-
formation (e.g. which stations are sending the most data and
what types of services and protocols are being used most fre-
quently) and a TCP connection graph.

The VINT project is developing a network simulator that
will allow the study of scale and protocol interaction in cur-
rent and future network protocols [6]. A network animator
(Nam) has been developed that provides packet-level anima-
tion, protocol graphs, and traditional time-event plots of pro-
tocol actions [4]. The scope of VTA is much smaller and its
use is correspondingly less complex than the use of Nam.

1



Session

Tcpdump [9] prints out the headers of selected packets
on a network interface. Many tools are available for traffic
analysis. These tools include Multi Router Traffic Grapher
(MRTG) [12], IPTraf [7], IP Flow Meter (IPFM), Tcptrace
[13] and Ethereal [3]. Ethereal also provides the ability to re-
construct (in ASCII format) the stream of data that flows over
a TCP connection. These tools, like XSNIFF, focus on analy-
sis of the traffic flowing over a network. The goal of our tool
is to illustrate execution of the TCP and UDP protocols over
IP and Ethernet. This is accomplished in part by providing
connection-oriented views, rather than views that attempt to
analyze all data passing through a network interface.

VISUAL TCP/UDP/IP ANIMATOR

VTA displays data in any of six views. The stream of data
displayed in these views begins from a user-specified source.
This stream then passes through an optional filter, and then
feeds into the selected views. In this section, we describe con-
figuration of the data stream and the six available views.

FIGURE 1.DATA SPECIFICATION WITH WIZARD

Input Data Specification

When VTA is first run, the user wizard, depicted in Figure 1,
guides users through the input data specification process. A
user may select one from among the optionsDisk File, All Re-
altime Traffic, Current Active Sockets, or Specific Application
as the initial source of the packet stream which feeds into the
VTA views.

Selection of theDisk Fileoption prompts the user for the
name of an input file. VTA can save the data of any session,
and this option can be used to replay an earlier session. File
input can also be easily generated using output fromtcpdump
[9].

When theAll Realtime Trafficoption is chosen, VTA will
collect all data that passes through the network interface.

When a user selects theCurrent Active Socketsoption,
she is presented with a list of all active sockets. She may select
any number of these active sockets, and all passing through
one of these sockets will be displayed. Figure 2 depicts the
active socket window.

VTA provides a library containing routines that wrapper
around the Linux socket system calls. These routines are de-
signed to allow a user to capture all the data flowing to and

FIGURE 2.ACTIVE SOCKET SELECTION

from a particular application, without requiring that the user
be aware in advance of port numbers assigned within the ap-
plication. Selection of theSpecific Applicationoption causes
VTA to inter-operate with the socket wrappers (through the
/tmp directory). This provides students a mechanism both
for understanding the operation of the socket system calls, as
well as debugging their socket-based network applications.

FIGURE 3.SOCKET FILTER SPECIFICATION

Whichever of these sources is selected, a subsequent filter
can optionally be applied to the stream prior to its display by
VTA. After selecting any of the available data sources, the
filter specification window (depicted in Figure 3) is presented
to the user. If no filter is applied, all collected packets will be
displayed. Data can be filtered by source IP address or port,
destination IP address or port, and protocol (TCP or UDP).

FIGURE 4.VTA M AIN WINDOW

International Conference on Engineering Education 2 August 18-21,2002,Manchester,U.K.



Session

FIGURE 5.PACKETLIST V IEW

VTA Views

Once the input packet stream has been configured, any of six
views can be selected for display of the stream. Capture and
display begins upon selectingStart from the main window,
shown in Figure 4, and continues untilStopis selected or no
additional data is available. A step mode, in which a single
packet is displayed for each step, is also available.

Processing of the input data stream can be stopped, and
the input stream reinitialized, at any time. When a new run
begins, all open views are cleared and display of new data
begins.

Following is a description of the six available views.

Packetlist View

The packetlist view window is depicted in Figure 5. A sum-
mary line is displayed for each captured packet. The summary
line contains:

• a packet number, indicating its position in the sequence
of captured packets,

• a time value, indicating seconds that have elapsed be-
tween the capture of the first packet and the capture of
the displayed packet,

• the source and destination IP addresses,

• the protocol (TCP or UDP), and

• protocol related information.

Selecting a single summary line displays the contents of the
packet in two formats. Thepacket detaildisplays a text de-
scription of, and value for, each field of each header (Ether-
net, IP, TCP/UDP) in the packet. The second depiction con-
tains the hexadecimal representation of the packet contents.
Selecting a field within the packet detail highlights the corre-
sponding packet bytes within the hexadecimal representation.

The packet view abstracts the received data stream as a
pile of packets. Data is viewed from the perspective of the
interface; there is no attempt to collect packets together in any
way, e.g. , packets that pass between the same two endpoints.

FIGURE 6.CONNECTION PACKET V IEW

Connection Packet View

The connection packet view is shown in Figure 6. A summary
line appears for each unique (source, destination) pair. The
summary line contains the source and destination addresses
(<IP address,port>). Selecting a particular pair displays a
summary line, similar to that of the packet view, for each
packet that has been sent or received, by the host, along the se-
lected path. Selecting the summary line for a particular packet
displays the application data contained in that packet in binary
and ASCII format.

This view separates the received packet stream into a
number of smaller streams, distinguished by communication
endpoints (same source<IP address,port> and destination
<IP address,port>). Unlike the packet view, a user can eas-
ily trace all data exchanged along a given path, including the
exchange of data required to establish and maintain a TCP
connection.

FIGURE 7.CONNECTION RECONSTRUCTIONV IEW

International Conference on Engineering Education 3 August 18-21,2002,Manchester,U.K.



Session

Connection Reconstruction View

The connection reconstruction view is shown in Figure 7. This
view attempts to depict data transmitted along the connection
as a conversation between the communication endpoints. A
summary line is displayed for each TCP connection. Select-
ing a single connection displays the data, in ASCII format,
that has flowed across the connection. Different text colors
denote the direction of the data transmission. For example,
data transmitted from the VTA host to a receiver always ap-
pears in a single color that is different from the single color
used to depict data received by the VTA host.

No data associated with connection maintenance is dis-
played in this view. It is suited to visualization of the data
exchanged by protocols that sit above TCP.

FIGURE 8.TOPOLOGYV IEW

Topology View

The topology view displays an undirected graph where edges
correspond to source/destination pairs in a captured packet
and nodes correspond to IP addresses. The topology view
window is depicted in Figure 8. For each node, an IP address
and number of packets sent and received is displayed.

In order to display the network topology, an automatic
layout algorithm based on a spring-embedder model is used
[5]. Attractive forces are assigned on all links and repulsive
forces are assigned between nodes. Iteration is used in an
attempt to achieve balance. This technique can produce rea-
sonable layouts of many networks, but may not produce sat-
isfactory results of complicated networks. As a remedy, VTA
allows the user to adjust the resulting layout by moving nodes
within the window.

FIGURE 9.TIMELINE V IEW

Timeline View

The timeline view is depicted in Figure 9. In the timeline
view, an axis appears for each new socket (<IP,port> pair).
Each sent or received packet results in an arrow between the
axes corresponding to the source and destination. Both UDP
and TCP communications are displayed. (If the transmission
is based on UDP, the arrow appears dashed; if the transmission
is based on TCP the arrow appears solid.)

FIGURE 10.TCP STATUS V IEW

International Conference on Engineering Education 4 August 18-21,2002,Manchester,U.K.



Session

TCP Status View

The TCP Status view is shown in Figure 10. This view depicts
the state of a TCP connection within the protocol state transi-
tion diagram [15]. Different colors, yellow or green, mark the
state in which the two connection endpoints currently reside.
A third color marks states through which the connection has
passed.

IMPLEMENTATION

To capture packets transferred by a network, a capture appli-
cation needs to interact directly with the network hardware.
VTA operates by putting the Ethernet network interface card
into promiscuous mode so that every packet going across the
network is captured. The underlying operating system must
provide support so that these frames can be captured.

Providing access to the datalink layer for an application
is a powerful feature that is available with most current op-
erating systems. VTA useslibpcap [9], a publicly available
packet capture library. This library provides VTA with a pow-
erful high-level capture interface. VTA does not interact with
the hardware directly, but uses the functions exported bylibp-
cap to capture packets, set packet filters, and communicate
with the network adapter.

FIGURE 11.SYSTEM ARCHITECTURE

Figure 11 shows the layered system architecture of VTA.
The lowest level is the datalink layer access primitive that is
provided by the operating system. It supplies the application
a set of functions used to read and write data from the net-
work at the datalink layer. The VTA main frame takes the raw
packet traffic from the network, encapsulates the packets into
a sequence of packets, and distributes the packets to various
views for display.

The graphical user interface manages the interaction with
the user and displays the capture results. It is constructed with
Qt[16], which is a C++ GUI software toolkit.Qt was selected
because it is highly portable, being currently supported on Mi-
crosoft Windows 95/98/2000, Microsoft Windows NT, Linux,
Solaris, HP-UX, Digital UNIX (OSF/1, Tru64), AIX and oth-
ers.

Figure 12 shows the packet flow among different layers
of the VTA system. The raw packets are captured from the
Ethernet adapter. Then the packets are filtered by the libpcap
library. After that, the packet traffic specified by the user is

FIGURE 12.DATA FLOW ARCHITECTURE

reconstructed into a sequence of packets by the packet ana-
lyzer and delivered to the main frame, which then distributes
the packets to different views specified by the user.

Unprivileged Access

VTA provides for access by unprivileged users (those who are
not root). Any ordinary user can run VTA, and she will have
access only to data transmitted through a socket which she
owns.

This is accomplished through use of a small, root-owned
setuid (SUID) program and the Linux/proc file system.
Within UNIX, a process has two userids (UIDs): areal UID
and aneffectiveUID. The effectiveUID is used to determine
whether or not a process has permission to access a resource.
Ordinarily, the real and effective UIDs are those correspond-
ing to the user executing a program. When a program is SUID,
the effective UID is set to the owner of the program, rather
than the UID that corresponds to the user executing the pro-
gram.

A root-owned SUID program performs all necessary
privileged operations for capturing data from the network. A
check is made to ensure the socket associated with a given
packet, to be displayed by VTA, is owned by the real userid of
the VTA process before the data is given to VTA for display.

The use of SUID programs provides the potential for
buffer overflow exploits. In order to address this concern,
the code which runs with an effective userid of root has been
minimized, and made available for (further) examination prior
to use. Still, system administrators may not be comfortable
adding an SUID binary onto their system. In this case, VTA
may be used within a laboratory which securely provides stu-
dents root access. (Examples of such laboratories, designed
to allow students root access, are given by Mayo and Kearns
[10], Schafer et al. [14], and Clark [2])

International Conference on Engineering Education 5 August 18-21,2002,Manchester,U.K.



Session

Packets captured live from the network are processed by
VTA periodically, to apply the user-specified filter and to re-
strict displayed data to that passing through a socket owned
by the user running VTA. When VTA is not run by root and
the socket wrapper library is not used, certain (UDP) packets
may be dropped. This arises when ownership of these packets
cannot be ascertained through the/proc file system.

CONCLUSIONS AND FUTURE WORK

The developed visualization tool illustrates the operation of
TCP and UDP over the IP and Ethernet protocols using pack-
ets captured live from the network or stored in a file. Several
views of captured data are provided that, when used individu-
ally or in combination, illustrate the operation of these proto-
cols.

Privileged access is not required. When the supplied
socket function wrapper library is used, all packets that pass
over a connection are captured. When the library is not used,
capture of all data is ensured only if VTA is run by the root
user.

The NIST Net Network Emulator [11] provides a mecha-
nism for examination of TCP (and UDP) responses to various
network conditions. NIST Net is a general purpose tool for
emulating performance dynamics in IP networks. NIST Net
can emulate end-to-end performance characteristics imposed
by various wide area network situations or by various under-
lying subnetwork technologies.

Based on our use of the tool, several additional features
are planned. Currently, VTA captures data from a single ma-
chine. While this is adequate for illustrating the characteris-
tics of TCP and UDP, we feel that distributing VTA (automat-
ically), so that data is captured at both ends of a connection,
will enhance its operation. Additionally, we are developing
program pre-processor directives to support two new oper-
ation modes. The first mode will allow monitoring of only
user-specified socket routines. For example, a user may then
only see traffic generated by one, among several, send oper-
ations contained in her source code. The second mode will
allow a user to step through the socket routines contained in
her code, viewing the packets generated by the execution of
each socket routine. Finally, we are planning to allow appli-
cation of a user-specified format to application data prior to its
display. This will allow a user to view the packet’s application
in a user-prescribed format, rather than only ASCII or binary,
as in the current version of VTA.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the work of Ping Chen,
Rong Ge, Yin Ma, and Yuping Zhang in development of a
preliminary version of VTA. Their efforts made this work pos-
sible.

References

[1] Bob Barr, Sung Yoo, and Tom Cheatham. Network mon-
itoring system design. InTwenty-ninth SIGCSE Techni-
cal Symposium on Computer Science Education, pages
102–106, Atlanta, Georgia, Feburary 26 – March 1 1998.

[2] P.C. Clark. Supporting the education of information as-
surance with a laboratory environment. InProceedings
of the Fifth National Colloquium for Information Sys-
tems Security Education, May 2001.

[3] Gerald Combs. The ethereal network analyzer.http:
//www.ethereal.com/ , 2001.

[4] Deborah Estrin, Mark Handley, John Heidemann,
Steven McCanne, Ya Xu, and Haobo Yu. Network vi-
sualization with nam, the vint network animator.IEEE
Computer, 33(11):63–68, 2000.

[5] T. Fruchterman and E. Reingold. Graph drawing by
force-directed placement.Software Practice and Expe-
rience, 21(11):1129–1164, 1991.

[6] Ahmed Helmy and Satish Kulmar. Vint project.http:
//www.isi.edu/nsnam/vint/ , 1997.

[7] Gerard Paul Java. Iptraf - an ip network monitor.http:
//cebu.mozcom.com/riker/iptraf/ , 2001.

[8] L. Lamport. Time, clocks, and the ordering of events
in a distributed system.Communications of the ACM,
21(7):558–565, 1978.

[9] Lawrence Berkeley National Laboratory Network Re-
search Group. Lbnl’s network research group.http:
//www-nrg.ee.lbl.gov/ , 2001.

[10] J. Mayo and P. Kearns. A secure unrestricted advanced
systems laboratory. InProceedings of the Thirtieth
SIGCSE Technical Symposium on Computer Science Ed-
ucation, pages 165–169, March 1999.

[11] National Institute of Standards and Technology Internet-
working Group. Nist net home page.http://snad.
ncsl.nist.gov/itg/nistnet/ , 2001.

[12] Tobias Oetiker and Dave Rand. Mrtg: The multi router
traffic grapher.http://www.mrtg.org/ , 2001.

[13] Shawn Ostermann. Tcptrace - official homepage.
http://www.tcptrace.org/ , 2001.

[14] J. H. Schafer, D. J. Ragsdale, J. R. Surdu, and Jr.
C.A. Carver. The iwar range: A laboratory for under-
graduate information assurance education.The Journal
of Computing in Small Colleges, 16(1):223–232, 2001.

[15] W. Richard Stevens.Unix Network Programming: Net-
working APIs: Sockets and XTI, volume 1. Prentice Hall,
second edition, 1998.

[16] Trolltech AS. Trolltech.http://www.trolltech.
com/ , 2001.

International Conference on Engineering Education 6 August 18-21,2002,Manchester,U.K.


