
Session 8D7

International Conference on Engineering Education August 6 – 10, 2001 Oslo, Norway
8D7-13

Ten Pounds in a Five Pound Sack:
Providing Undergraduate Software Engineering Students with

Technical Management Experience

Daniel Stearns1, Sigurd Meldal2, Clark Savage Turner3

1 Daniel J. Stearns, Computer Science Department, California Polytechnic State University, CA 93407, dstearns@calpoly.edu
2 Sigurd Meldal, Computer Science Department, California Polytechnic State University, CA 93407, smeldal@calpoly.edu
3 Clark S. Turner, Computer Science Department, California Polytechnic State University, CA 93407, csturner@calpoly.edu

Abstract — When Cal Poly created an undergraduate
software engineering program, the challenge was to
package the "ten pounds" of science, computer science and
engineering into the "five pound" capacity of a bachelor’s
degree. On top of this, we needed to add preparation for the
management roles required of a professional software
engineer.

Cal Poly (California Polytechnic State University) was
established a century ago with the motto "Learn by doing!"
Cal Poly's educational mission requires instructors to
apply theoretical knowledge to practical problems. This
was the guideline when the Cal Poly Computer Science
Department defined a new software engineering program:
to provide industry with high-caliber, deployment-oriented
software professionals.

A major program objective is “hands-on” experience.
The curriculum is founded on traditional computer science,
but distinguishes itself by:

• Emphasizing a team approach to building software and

providing leadership opportunities for each student.
• Focusing on software process.
• Including engineering and management areas such as

project planning, resource allocation, quality
assurance, testing, metrics, maintenance, configuration
management, and personnel management.

• Placing a stronger emphasis on mathematics and the
use of engineering methods in software design.

The solution to the packaging challenge: teach a

sequence of interlocking software engineering courses:
sophomores participate with seniors in a yearlong, team-
based project that constructs sizable (> 200 function point)
software systems for industrial clients. Seniors participate
as technical managers and mentors who assume leadership
responsibilities for project deliverables.

This paper describes the experience and lessons
learned during our first year.

Index Terms  Software engineering, Undergraduate
education, Technical management education, Project-
oriented education.

BACKGROUND

Cal Poly and Its Instructional Philosophy

The California Polytechnic State University (Cal Poly) was
founded a century ago, and (according to anecdotal
evidence) its instructional mission was determined by the
founder’s personal experience during hard times – theoretical
knowledge is of limited value unless it's applied to practical
challenges.

The belief that theoretical knowledge is reinforced
through its application to practical problems governs Cal
Poly’s instructional philosophy. The motto “Learn by
doing!” is widely displayed and permeates all degree
programs.

Cal Poly is a polytechnic institution with several
nationally ranked engineering programs that graduate a
thousand engineers each year. Each graduate has completed
an extensive general education program combined with an in-
depth study of a specific engineering discipline. Graduates
enter their careers with a practical understanding of their
profession due to a series of lab and real-life experiences that
apply theory to real engineering problems.

The Cal Poly Computer Science Department hosts two
undergraduate degree programs – Computer Science and
Computer Engineering (co-hosted with the Electrical
Engineering Department). The degree programs prepare
students for professional careers in software and hardware
development. A large majority of the graduates enter the
workplace rather than undertaking graduate studies.

In crafting its 3rd program (Computer Software
Engineering), the department traded some theoretical topics
for an in-depth coverage of software design and other
software process topics. The objective is a student with a
"can-do" attitude and a thorough professional preparation
who will live up to high employer expectations.

Session 8D7

International Conference on Engineering Education August 6 – 10, 2001 Oslo, Norway
8D7-14

Computer Software Engineering

There is a growing realization that the demands of our
profession require fundamental engineering skills. We
believe the time has arrived to create an undergraduate
software engineering program.

The term software engineering dates back to 1972 as
was coined by F. L. Bauer:

"The establishment and use of sound engineering
principles (methods) in order to obtain
economically software that is reliable and works
on real machines." [1]

The transformation of the software profession from a
craft to an engineering discipline is an on-going project, and
far from complete. The pioneering work of the Software
Engineering Institute [6], the subsequent work on a software
engineering body of knowledge [8] and an associated set of
curriculum guidelines [5] provided us the impetus to create a
bachelor's degree in Computer Software Engineering.

The distinguishing features of a software engineering
degree arise from the observation that software engineering
deals with deployment-oriented software development. This
phrase establishes what software engineering is about:

• Development of a product to address a real need.
• Timely and predictable delivery.
• Affordability.
• Customer satisfaction.

When measured against the above success criteria, the
current state of the profession falls short. An improved
education addressing these needs is warranted.

The proposed Cal Poly computer software engineering
curriculum (CSE) complements the existing computer science
program emphasis on a solid base of concepts and
technology skills with an introduction to resource and
technical management. We understand the legitimate
concern about the depth of knowledge a university can
provide within existing curricula. Our challenge is to fit these
additional learning units into a four-year program without
sacrificing other valuable requirements.

This challenge is addressed through two tightly
interwoven sequences of courses. The first sequence is
offered during the sophomore year and introduces students
to software engineering. The second sequence offers a
yearlong capstone software development experience in the
senior year. This report describes our first year of experience
with the capstone course sequence.

CAPSTONE COURSE SEQUENCE OBJECTIVES

The capstone sequence spans three quarters – a full
academic year. The courses making up the sequence are

named Software Requirements Engineering, Software
Construction and Software Deployment.

Before entering the capstone year the students acquired
foundations in mathematics and computer science. They also
completed two courses in manufacturing engineering and a
course in organizational behavior, with an emphasis on the
dynamics of team collaboration. In the software engineering
area, the students have completed a two-quarter introductory
sequence, as well as a one-quarter course in individual
software development, where they complete a significant
individual software construction project. We found the latter
important, since the computer science introductory courses
do not provide the students with sufficient experience and
understanding to support major software development
efforts.

The objectives of the introductory sequence are:

• To understand software engineering fundamentals,
especially software design and development prior to the
deployment phase.

• To achieve basic literacy with the standard software
engineering artifacts: requirements specifications,
software architecture, design, user interface
storyboards, prototypes, and quality assurance plans.

• To understand the notion of software quality attributes
and how they flavor the development processes.

• To gain experience with an organizational framework
where documents written by others form the basis for
their development.

• To engage in significant team-based projects.

We have found that sophomore students are insufficiently
prepared and professionally immature to benefit significantly
from being asked to manage a software development
process. However, we do want the students to get a practical
understanding of the challenges of software construction.
Therefore, our design of the capstone sequence has the
following objectives:

• To provide the students with a thorough understanding

– through experience, reading and lectures – of the
software engineering processes. We explicitly included
post-deployment activities.

• To provide the students with the tools and concepts
necessary to successfully schedule software
engineering processes, given limited resources.

• To provide the students with an opportunity to learn
and practice management skills.

Given the needs of the sophomore sequence as well as the
limited number of course units an undergraduate degree
provides, we wove together the sophomore and capstone
course sequences.

Session 8D7

International Conference on Engineering Education August 6 – 10, 2001 Oslo, Norway
8D7-15

CAPSTONE COURSE STRUCTURE

The software engineering capstone course sequence
comprises three courses taken during an academic year. For
the purposes of this paper, the three courses are designated
as:

1. Requirements

 In this course, the students elicit requirements from
the users and write a software requirements
specification. The course content includes formal
specification writing, requirements modeling, rapid
prototyping, and elicitation techniques.

2. Construction
 In this course, the students build the initial version
of the software product and deploy that version at the
customer's site. The course content includes design
modeling, software construction techniques, software
quality assurance, and software project management.

3. Deployment
 The students maintain the product during this
course. They add functionality to the product, repair
defects, create variants and perform usability testing.
The course involves release management, software
maintenance, deployment practices, software quality
metrics, and metric-based process improvements.

Intro

CSE I

Intro

CSE II

Shared lab Construction

Realized
Product

Software Requirements
Specification

Requirements

Deployment

Deployed and
Evolved Product

Shared lab

Figure 1 Capstone course sequence

To offer students realistic leadership roles, the Construction
and Deployment course laboratories are comb ined with the
laboratories of the Introduction to Software Engineering
courses. Each student team contains students from two
courses. The Construction course students serve as leaders
to the Intro CSE I students. The Deployment course
students work with and serve as leaders to the Intro CSE II
students. This unique feature of Cal Poly's capstone

sequence created a number of human interactions as the
students from two courses worked on software projects.
Figure 1 shows the relationships among the 5 courses.

PARTICIPANTS

The capstone course sequence stands or falls on the
shoulders of three participant groups: faculty, students and
industry project providers. In this section, we describe some
of our choices and the reasoning we used in making choices.

Faculty

The capstone sequence is based on a yearlong interaction
with industry through real-world projects. We needed, and
obtained, academically qualified faculty with significant
industrial experience. As a new, experimental course
sequence involving industry interaction, extra work was
required and the risks were unknown.

Students

For the most part, only motivated, highly qualified students
requested the courses. Some qualified students could not be
accommodated due to the limitation of class size at thirty.
For the capstone sequence courses, our choice of students
was based on grades in the introductory software
engineering courses, level of industrial experience and
faculty recommendations.

An exception was made for the students from St. Jude
Medical. In that case, the project provider selected the
students (their own employees) to work on their project.
Their employees were admitted as normal matriculated
students in the Cal Poly Computer Science department.

There was no selection process used for the
introductory courses; those courses are required for all
students. One section was selected to work with the
capstone sequence; the students were informed the first day
of class and given the opportunity to change to a "normal"
introductory section - every student chose to remain with the
experiment.

Industry Project Providers

In order to make the capstone sequence work, we needed a
complete instructional package from our industrial
supporters. In particular, we needed:

• Real industrial projects with appropriate characteristics.
• Funding to support our instructional mission.

We emphasized our instructional mission to our project
providers! We stressed that there would be no deliverable
guarantees. At best, we expected to deploy a working beta
version with significant functionality.

Why would our project providers lend time, financial
support, and corporate proprietary information to Cal Poly

Session 8D7

International Conference on Engineering Education August 6 – 10, 2001 Oslo, Norway
8D7-16

student projects? Perhaps they believed our students would
generate valuable solutions? This was never considered
likely. 4 The primary motivation was recruiting: industry
providers interact with our best students. These students
became familiar with the industry provider. Recruitment costs
and risks are vastly reduced by such engagement.

St. Jude Medical had another motivation for their
involvement. They sought to increase employee retention by
sponsoring employee professional development.

Project Expectations

Our expectations for the projects were driven more by
the “real world” target than a purely academic inclusion of
certain elements. We could be flexible in accepting projects
as long as we could envision all of the following elements as
a natural extension of development:

• GUI interface
• Database component
• Multi-threading
• Several distinct components
• Rich in use-cases and business logic
• Real nonfunctional requirements
• Scoped for a three course sequence

After meeting with several industry supporters, we

chose the three projects we felt had the best potential to
support our goals. Each project started as someone’s “pet”
idea that could result in a prototype of some useful software
not currently considered a priority by the provider.

Three companies, Airtreks, IPTech, and Saint Jude
Medical were our industry providers during this first year.
Time, space and nondisclosure agreements prevent
discussion of project details, but each one involved unique
and interesting problems that potentially met our criteria.

We further note that we could adjust the scope of the
projects during course evolution. We could add important
elements dynamically, just like the real world. Of course, we
could also help teams prune the project scope to meet actual
time and resource constraints.

4 There were delicate intellectual property issues to be worked out
here. The university usually claims property rights to student and
faculty creations. The project providers would naturally want those
rights. Further, the project provider necessarily shares proprietary
information with faculty and students to get the project started. We
explained to the university that our mission was uniquely instructional
and that no valuable creations were likely. The university accepted
that position and waived rights to intellectual property created during
the capstone courses. Industry providers required students and faculty
to agree to nondisclosure of corporate proprietary information. We
considered this a workable solution.

HOW DID IT GO? WHAT DID WE LEARN?

The Requirements course students, working in teams, wrote
Software Requirements Specifications that were approved by
each of the companies. Each student team devoted the entire
course to one of the three companies. Students in the
subsequent courses used the software requirements
specifications to define their course objectives.

Requirements Course

The Requirements course produced three usable
specifications and the students learned how to elicit complex
requirements on real projects. For those two reasons alone,
the Requirements course was deemed a success. The
company liaison representatives worked closely with the
student teams. St. Jude Medical and IP Tech had company
employees enrolled in the course. One of the capstone
sequence instructors had a professional connection with the
Airtreks. These connections were considered important, but
not vital, to the success of the course.

Students in the Construction and Deployment courses
used the SRS documents as a baseline document but they
experienced a number of problems:

• There were a number of inconsistencies and incomplete

sections in the software requirements specifications.
While such problems are normal and provide an
excellent learning experience, they cause real difficulties
for developers on a tight schedule. Construction
course students spent too much time revisiting the
requirements issues.

• The Requirements course students believed that
requirements elicitation meant ‘ask the customer what
he wants’. In all 3 projects, the customer didn't have a
clear or feasible system vision.

• Requirements course students were learning how to
write product quality specifications. In general, they
did an excellent job but somehow came to believe that

SRS quality = f (SRS weight).
• Two of the projects were from complex problem domains

that required significant effort to understand. Lack of
domain knowledge is a problem that student projects
can do without.

• The Requirements course students had little ability to
produce accurate estimates. Function Points were
taught in the Requirements course. But even if the
student estimates were accurate (they weren't), there is
no evidence to show that function point estimates
apply to a college course.

Session 8D7

International Conference on Engineering Education August 6 – 10, 2001 Oslo, Norway
8D7-17

Construction Course

The Construction course had a clearly stated objective: build
the software specified by the Requirements course students.
This objective was complicated by:

• The student turnover from the Requirements course was

50%. Many new students joined the sequence; once the
CSE program is in place, this won't happen because
every student will take the entire sequence.

• A major part of the capstone sequence is a required
leadership experience. The Intro CSE I students joined
the course and were assigned to student teams. Each
student team worked on one of three projects for the
entire course. Each team included Construction course
students and Intro CSE I students.

Most software engineering students are delighted to

enroll in a course where they construct software. They
typically believe that software construction is the ultimate
job skill and most students enjoy it. But the Construction
students quickly learned the difference between
‘programming for fun’ and ‘programming for real.’ They had
to deal with unclear and incomplete specifications and
customers who constantly change their vision. They quickly
understood the immediacy of a 10 week schedule for a large
(200 function points) project.

The capstone course instructors were naturally
delighted with all these revelations because they provided
wonderful fodder for learning software engineering. In fact,
the students often forget, and had to be reminded, that they
were working on a project as part of a university course.

In any case, course expectations were set quite high and
the pressures mounted as the students realized the realities
of completing a real project. Each student team appointed a
product manager to deal with requirements issues. The
product managers juggled the customer requirements, the
Requirements course specifications and the scheduling
realities.

We expected team issues to dominate the Construction
course and were not disappointed. Each Construction
course student accepted a leadership role; some accepted
minor multi-person task assignments. Others managed major
development or project tasks. But each Construction student
practiced leadership; a major component of their course
grade depended on leadership activities. There were several
problems/issues caused by this structure.

• The Construction course students had responsibility

without authority; the only real authority in a university
course is the grade. This problem was discussed
constantly throughout the course; in the end, we
decided that the leadership students would write formal,
weekly evaluations of the Intro CSE I students. The

Intro CSE I instructor used these evaluations as a major
component of each student's grade.

• In any group, there are people who are unwilling or
unable to exercise leadership skills. It is difficult to force
leadership on someone who is quite uncomfortable in
that role. However, some Construction students who
had never acted as a leader in any capacity, grew
markedly during the course.

• In many cases, Intro CSE I students were technically
stronger than their leaders. Even though such a
relationship is common in the corporate world, students
had a difficult time adjusting to it.

• The Intro CSE I students were given a time budget for
their work in the course (15 hours per week - a typical
expectation for a 4 credit course). The Construction
course leaders paid little or no attention to this limitation
and treated the Intro CSE I students as employees. This
was one manifestation of a number of time management
problems. University students live a complex life full of
activity and can't be expected to completely devote
themselves to a project in one course.

Deployment Course

The Deployment course was designed to instruct students
on the myriad of issues involved after a software product is
deployed. The Construction course students created three
software products that were installed at customer sites. In
each case, the customer installed and accepted the product.
Notably, all three customers failed to invest much energy in
the installed product; this diminished the Deployment course
experience for the students. What happened?

• The St. Jude Medical students (full-time employees,

part-time students) lost management support for their
time spent in the courses. The students' work projects
took priority; in the end, the students withdrew from the
capstone sequence.

• The IP Tech interest was never particularly strong; their
employees who were enrolled in the courses continued
to represent the company interest without much
support.

• The Airtreks project, while of long-term interest to the
company, had little immediate relevance.

The lesson learned: get strong commitments from the
corporate sponsors with identified individuals who will
remain invested in the capstone projects for the entire year.

We decided to replace the team organization in the
Requirements/Construction courses with a completely new
structure, matrix management. The Deployment course
focused on release and maintenance issues that don't require
a team structure. In addition, the instructors wanted to test a

Session 8D7

International Conference on Engineering Education August 6 – 10, 2001 Oslo, Norway
8D7-18

completely different relationship between the two linked
courses (in this case, Deployment and Intro CSE II).

The matrix management organization was designed to
provide technical leadership tasks for each Deployment
course student but without the pressure of a team. The
product ownership was given to program managers; these
students assumed total responsibility for the product.

Technical tasks, including maintenance and release
management tasks were assigned by a group of three
students on ‘The Engineering Change Order board’ (ECO
board). The ECO board evaluated work order proposals,
approved or denied each proposal and assigned students to
the accepted proposals. In essence, executive management
of the courses was turned over to a group of senior students.

The team problems of the Construction course naturally
disappeared since there were no teams. But there is no way
to avoid the human problems; the team problems were
replaced by tasking problems: e.g.

• Who is assigned to which task?
• Who gets to work with which task leader?
• What motivates someone to complete a task when there

is no ownership?

The products improved markedly during the Deployment
course while the students experienced the reality of working
in a maintenance organization. The student learning
outcomes were significant: the students experienced metric-
based management, multiple version releases, configuration
variants, and several other deployment issues.

The Deployment course was designed to have constant
interaction with customers. We wanted the customers to use
their deployed products, find defects, request enhancements
and constantly interact with the students. Our biggest
disappoint is that this didn't happen (for the reasons
mentioned above). Without real customers, the Program
Managers had to work in a vacuum and never came to fully
understand their ownership role. The QA and testing
processes suffered because there was no stakeholder who
demanded an excellent product.

WHAT'S NEXT?

At the outset of the first year of these courses we anticipated
problems identifying and defining suitable projects for
industrial clients. Though the projects given the students
suffered some problems, we have found that there are quite a
large number of potential clients expressing enthusiastic
interest in providing us with projects for the next year's
sequence. Unless the need for software development
expertise vanishes, we expect no problem providing the
students with suitable challenges in the future.

However, we do need to make changes. The lack of
strong commitment from the project providers, particularly in

the last quarter of the sequence, diminished the learning
experience. To ensure a sustained level of interest, we expect
to ask the next year's providers for a full year commitment
with a significant financial component. We also plan to work
more closely with the project providers to increase the
usefulness of the delivered systems.

Another important lesson is to look for projects in
domains familiar to the students. The esoteric character of
two projects distracted the students from the software
engineering challenges. It is important that students learn
how to communicate with non-engineers about unfamiliar
domains. However, that learning objective is not well served
by challenging students with exotic and technically difficult
development domains.

Similarly, we will select projects amenable to tools and
working environments familiar to the students. As with
knowledge domains, the future professionals are expected to
understand how to acquire skills with new tools as part of
their professional development. However, if the tools
required for a project require a steep learning curve then the
skill acquisition process becomes a barrier to achieving more
important learning objectives of the classes.

REFERENCES

Historical material
[1] Bauer, F L, "Software Engineering", Information Processing 71,

1972.

Material that discusses the need for trained computer
software engineers
[2] Gibbs, W. W., "Software’s Chronic Crisis" , Scientific American,

Vol. 271, No. 3, September 1994, p.86

[3] Office of Technology Policy, America's New Deficit: The
Shortage of Information Technology Workers, U. S. Department
of Commerce, 1998

[4] U.S. Department of Labor, Occupational Outlook Handbook,
Bureau of Labor Statistics, 2000
(http://stats.bls.gov/ocohome.htm)

Material that discusses computer software engineering
curricula topics
[5] Bagert, et .al., Guidelines for Software Engineering Education,

Technical Report SEI-99-T R-032, Software Engineering
Institute, October 1999
(www.sei.cmu.edu/publications/publications.html)

[6] Ford, G., Education and Curricula in Computer Software
Engineering, Encyclopedia of Computer Software Engineering,
Vol. 1, John Wiley and Sons, Inc., 1994

[7] Ford, G., A Progress Report on Undergraduate Computer
Software Engineering Education, Technical Report SEI-94-T R-
001, Software Engineering Institute, 1994
(www.sei.cmu.edu/publications/publications.html)

[8] Hiltburn, et. al, A Software Engineering Body of Knowledge,
Technical Report SEI-99-T R-004, Software Engineering

Session 8D7

International Conference on Engineering Education August 6 – 10, 2001 Oslo, Norway
8D7-19

Institute, April 1999
(www.sei.cmu.edu/publications/publications.html)

[9] Modesitt, Ken, "Software Engineering Program Survey Results",
Forum for Advancing Software Engineering Education, Nov.
2000
(www.cs.ttu.edu/fase/reverse.htm)

[10] National Center for Education Statistics, Classification of
Instructional Programs – 2000, U.S. Department of Education,
2000

Textbooks used in the courses
[11] Braude, E. J., Software Engineering. An Object-Oriented

Perspective.John Wiley & Sons, 2001

[12] Brooks, F. P., The Mythical Man-Month , Addison-Wesley, 1995

[13] Gause, D. C., Weinberg, G. M., Exploring Requirements, Dorset
House, 1989

[14] Grady, R. B., Practical Software Metrics for Project
Management and Process Improvement, Prentice-Hall, 1992

[15] Hunt, A., Thomas, D., The Pragmatics Programmer: From
Journeyman to Master. Addison-Wesley, 1999

[16] Jackson, M., Software Requirements and Specifications,
Addison-Wesley, 1998

