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Abstract 

This work shows how a computer algebra system (CAS) is applied in a course of advanced fluid 
mechanics. The authors put the focus on gas dynamics [1,4] and show how a CAS, in this case 
MAPLE 14 [3], can be used to teach this subject. It is known from the teaching experience of the 
authors that especially in gas dynamics some mathematical problems for the students appear. 
With the help of a CAS it is possible to shorten lengthy calculations for an instructor during 
lessons and students can work out problems on their own and improve their skills. An important 
fact are the visualization capabilities that a CAS offers. For example it is possible to study the 
behavior of equations or obtained solutions in a graphical manner or variables can be changed 
for a case study. In addition gas dynamics is a classical example for a multiphysics discipline in 
engineering. It is built up from the basic principles of continuum mechanics and bundles fluid 
mechanics, thermodynamics and chemistry. In this work the theoretical framework and two 
problems, concerning the de Laval nozzle are prepared with a CAS to present them in a modern 
course of compressible fluid dynamics.  
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1. Governing equations 

The governing equations are obtained from the fundamental principles of continuum thermo-
mechanics.  
 
 

                    
    
Figure 1: Fixed control volume for the derivation          Figure 2: Finite control volume for quasi- 
of the governing equations            one-dimensional flow 
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In detail these principles are: 
 
 Continuity equation: “Mass can neither be created or destroyed” 
 

 ∫∫ ∂
⋅−=

∂
∂

VV
vSddV

t
ρρ                 (1) 

 
Momentum equation: “Time rate of change of momentum of a body equals the net force exert 
on it” 
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 Energy equation: “Energy can neither be created nor destroyed; it can only change in form''  
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Additionally to these equations, the constitutive behavior of the medium must be described. This 
is done by an equation of state connecting the thermodynamic variable pressure p, density ρ 
and temperature T. The simplest vaporous medium is the calorically perfect gas, described by 
the following equation of state: 
 

 RTpv =            (4) 
 

In Eq.4 the specific volume v=1/ρ and the specific gas constant R is introduced. The equation of 
state describes a surface in a threedimenional p,v,T – space, as shown in Fig.3. A 
thermodynamical process can take place between two points on this surface. Additionally a 
thermodynamic relation for the internal energy e in the form 
 

 ( )ρ,Tee =            (5) 
 

is necessary. For a calorically perfect gas this relation is very simple and its derivation can be 
found in textbooks on thermodynamics, e.g. [2]. The relation is given by: 
 

 Tce v=            (6) 
 

where cv is the specific heat at constant volume of the gas. In this work a quasi one-dimensional 
flow is investigated, i.e., p=p(x), ρ=ρ(x), T=T(x), u=u(x) and A=A(x) for the area of the stream 
tube, which means that only one spacial variable exists. Application of the governing equations 
to a one-dimensional steady adiabatic flow without body forces through the control volume, 
shown in Fig.2, gives 
 

 222111 AuAu ρρ =  continuity equation       (7) 
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It is advantageous to introduce the enthalpy 
ρ
p

eh += in the energy equation resulting in 
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1.1 Isentropic process 

From the fundamental energy principle the first law of thermodynamics follows. For a closed 
system it states that an increment change of internal energy caused by an increment change of 
work plus the increment change of other energies respectively heat. In the language of 
mathematics this is given by 
 

 wpde δδ +=          (11) 
 

where d denotes an exact differential and δ denotes a differential which is not exact. There 
exist different possibilities to supply heat to a thermodynamical system. For example, if heat is 
added reversible to the system then the increment in work is pdvw −=δ  (see [2]), and the first 
law becomes 
 pdvqde −= δ          (12) 
 

In the further derivation it is necessary to introduce the second law of thermodynamics and 
additionally the state variable entropy. To understand the content of the second law, consider 
the following experiment. Consider an ice cube in a cup of hot tea. From experience it is clear 
that the ice will warm up and melt and the tea cool down. However, as long as energy is 
conserved the first law allows that the ice cube get cooler and the tea heats up, but this is not 
observed up today by anybody in reality. So it is obvious that nature imposes a condition in 
which direction a process will take place. This condition is the second law of thermodynamics. In 
mathematical form of the second law reads 
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If the process is reversible then in Eq.13 the equal sign is valid. For a calorically perfect gas and 
a reversible process the change in entropy is 
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The process is called isentropic if the entropy is constant, i.e. 0=∆s . From the last equation, 
the equation of state and the isentropic exponent 
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The following very useful relations can be derived. They connect the state variables p, T, v, ρ. In 
detail they are 
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The last relation is the isentropic relation 

 .constpv =κ           (17) 
 

In Fig.4 this equation is plotted for a common value of the isentropic exponent κ = 7/5. At the 
end of this section it should be noted that an isentropic process is a process which is reversible 
and adiabatic. 

1.2 The speed of sound 

By definition, sound is a mechanical wave or disturbance propagating through a medium (gas, 
liquid or solid). The amplitude of the wave is small and the change of all thermodynamic 
properties across the wave front is also small. The speed at such disturbances propagate 
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Figure 3: Surface defined by the equation   Figure 4: Isentropic process pvκ = 77472 for 
State pv=RT for calorically a perfect gas         κ = 7/5 
 
through a medium is the speed of sound. It is one of the most important quantities in studying 
compressible flows. To calculate the velocity of sound the following gedankenexperiment is 
done. A sound wave propagates with the velocity a. If an observer moves with the wave, from 
his point of view the wave front is stationary and he will see the picture shown in Fig. 5. 
 

 
 

Figure 5: Schematic of a plane sound wave; state 1 upstream, state 2 downstream, speed of 
sound a, pressure p, density ρ, temperature T and their increments denoted by da, dp, dρ, dT. 
 
Applying the equations of continuity, Eq.7, gives 
 

 ( )( ),daada ++= ρρρ  
ρ

ρ
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The momentum, Eq.8, reads as: 
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Substitution of the Eq.18.2 in Eq.19.2 gives 
 

 
ρd
dp

a =2          (20) 

 

In the sense of thermodynamics crossing the front of the sound wave is process. By definition 
the changes of the field variables T, p, ρ across the front are slight, i.e. all gradients are small. 
All irreversible effects due to thermal conduction and friction are negligible and there is no heat 
addition to the fluid hence the process is adiabatic and reversible, i.e., crossing the wave front is 
an isentropic process (s=const.).  
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In a more precisely fashion the speed of sound is: 
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There exists a connection with the isentropic compressibility τS of the medium and the speed of 
sound given by: 
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This relation gives an explanation for the high speed of sound in materials with a low 
compressibility e.g. fluids at normal conditions or solid materials. In Tab.1 the speed of sound 
for some materials is given.  
 

Table 1: Speed of sound for different materials [5] 

 
 
For an isentropic process (pvκ =const.) of a calorically perfect gas (pv=RT) the speed of sound 
reads as: 
 

 RTa κ=          (23) 
 

This is an important equation in mechanics of compressible fluids. It shows directly the 
dependence of a on temperature T and the sort of gas through R and κ. To connect the velocity 
of a medium to the speed of sound at a certain point in the flow field, the Mach number M is 
introduced. It is defined as 

 
a
u
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In words this relation states: “The Mach number is the quotient of the local fluid velocity and the 
local speed of sound''. From its definition it is clear that M is also a local quantity. With the Mach 
number it is possible to categorize compressible flows into several classes. For M = 1 the flow is 
sonic, if M < 1 then it is subsonic and if M > 1 the flow is supersonic. In aero- and astronautics 
there exists situations in which M >> 1, then the flow is called hypersonic. 

1.3 Concept of total behavior 

It is advantageous to define two hypothetical fluid states. The first one is the so called total or 
stagnation state. It is defined in the following way. Consider a fluid element at the state p, T, ρ, 
u. The element is now slowed down isentropically to zero velocity. At this state the element 
have the stagnation or total pressure pt, the stagnation or total temperature Tt and the 
stagnation or total density ρt. From the energy equation Eq.9 and the enthalpy h it follows that 
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The total temperature can be written in terms of the temperature and the Mach number and the 
isentropic exponent as: 
 

 2

2
1

1 M
T
Tt −

+=
κ

                     (26) 



  

6 
 

Inserting the isentropic relation pvκ=const., the expression for the pressure follows as: 
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Substitution of Eq.26 in Eq.27.1 and Eq.27.2 allows to write expressions for the total pressure 
and for the total density in terms of ρ, κ, M as 
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The second useful hypothetical state of a fluid element is the so called *-state, reached in the 
following way. Consider again a fluid element at an arbitrary state given by p, T, ρ, M. Now 
imagine to speed up (if M < 1) or slow down (if M > 1) the fluid element until the Mach number  
M = 1 is reached. In the new state the temperature is T*. The speed of sound at this 
hypothetical state is 

 ** RTa κ=          (29) 
 

2. Isentropic Flow of a calorically perfect gas through variable-area ducts 
 

Writing the equation of continuity for the control volume in Fig.6 gives: 
 

 uAAu ρρ =***   ** au =⇐         (30) 
 

 
u
a

A
A t

t

**

* ρ
ρ

ρ
ρ

=          (31) 

 

Introducing total quantities and specialization for sonic conditions the following equation is 
obtained: 
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The Eq.32 is one of the most important relations in gas dynamics. Therefore it is instructive to 
visualize it. In Fig.7 the Mach number M is drawn as a function of the area quotient Av=A/A* with 
the isentropic exponent κ as parameter. 
 

                                       
 
Figure 6: Geometry for the derivation     Figure 7: Area-mach number relation with  
of the area-mach number relation     isentropic exponent κ as parameter 
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From this picture it can be seen that how a duct must be designed to accelerate a flow from the 
subsonic regime into the sonic or supersonic regime. Starting from rest (gas in a pressurized 
vessel) the area of the duct must decrease. At the point Av=1 the cross section area of the duct 
is exact the critical area and the velocity of the gas is the speed of sound. If it is necessary to 
increase the gas velocity further, an outstanding effect occurs. Contrary to expectations, the 
area cross section of the duct must increase from this point on. Such a device is called de Laval 
nozzle after the Swedish engineer Gustaf de Laval, who developed it in 1880's for the usage in 
a steam turbine, which was also invented by him [6]. 

3. Examples 

The following two examples show how CAS can be used to solve problems in compressible fluid 
dynamics and how it can be utilized to visualize results. The authors have chosen MAPLE 14 [3] 
for the computations in this work. All worksheets can be obtained from the authors.  
The geometry of the nozzle is given from the construction by the ratio A0/A as function of the 
normalized nozzle length x/L as: 
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This area ratio can be visualized in a simple manner by the CAS, it is drawn in Fig.8. 
 
 

                            
Figure 8: Area ratio A0/A(x/L) of the de Laval          Figure 9: Shape of the de Laval nozzle  
Nozzle investigated in example 1 and 2           investigated in example 1 and 2. 
 
 

The nozzle should have a circular cross section. Therefore the function area ratio in Eq.33 can 
be resolved in terms of the nozzle diameter ratio. It is instructive to show the geometry of the 
nozzle. This is also a simple task if a CAS is used. For example a ratio of d0/L = 5 gives the 
shape shown in Fig.9. 
 
 

3.1. Example 1, M0=0,9 
 
The function A0/A and the Mach number M0 of a convergent-divergent nozzle is given. A0 is the 
through of the nozzle and M0 is the corresponding Mach number. The gas flowing through the 
nozzle has in isentropic exponent κ. A one-dimensional steady state isentropic flow is assumed. 
The specific flow variables p/pt, T/Tt, ρ/ρt and the Mach number M as a function of the relative 
nozzle length x/L are sought. 
Following data are given: κ=1.4, M0=0.9, Tt=400K, pt=10bar, R=287J/kgK, ρt=8,7108kg/m³. The 
result for M(x/L) is given in Fig.10 and the specific flow quantities are plotted in Fig.11. 
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Figure 10: Mach number M(x/L) for M0=0.9              Figure 11: Specific flow variables for M0=0.9 
 
 

               
 
Figure 12: Mach number M(x/L) for M0=1 Figure 13: Specific flow variables for M0=1 
 
 
3.2. Example 2, M0=1 
 
Expansion to M>1, sonic conditions in the nozzle through : The function A0/A is the same as in 
Example 1. The Mach number M0 is now M0=M*=1. All other flow data are the same as in 
Example 1. The result for M(x/L) is given in Fig. 12 and the specific flow quantities are plotted in 
Fig.13. 
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