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Abstract  The purpose of this paper is to show the merits
of using the order-of-magnitude analysis in engineering
education to solve engineering and science problems, e.g.,
taken from the fields of heat transfer and fluid mechanics. By
this approach, the engineering student obtains an approxi-
mate solution to a problem identifying the dominating pa-
rameters and their influence on the described system. The
solution is generally an outcome of simple algebraic opera-
tions. Four problems are considered to illustrate the power
of the order-of-magnitude analysis method. In each problem,
the results are discussed in respect to the implied
assumptions, simplifications and range of validity.
Analytical solutions are provided to assess the validity of the
order-of-magnitude results.

Index Terms – Approximate solutions, order-of-magnitude
analysis, scaling analysis, thermal sciences.

INTRODUCTION

The premise of the paper is this: In most natural processes
sought to be studied by theoretical models, the requirement
that all relevant terms of the conservation equations have to
be of equal order of magnitude suggests reference scales for
time, length and mass, and thereby for forces and fluxes.
Once this point is noted, the functional form of the solution
can be deduced without ever having to solve the
mathematical problem. Order-of-magnitude or scaling
analysis has been aptly characterized as “the premier method
for obtaining the most information per unit of intellectual
effort” [1] and it represents a good starting-point for further
extensive analysis. A question may arise, whether the
quantity of interest has to be measured in millimeters or
meters. Said differently, on a logarithmic scale, is the value
of a parameter of the order of 100 (i.e., approximately in the
range from 0.5 to 5) or of the order of 103(i.e., roughly in the
range from 500 to 5,000). If the rules associated with this
method are applied thoroughly, the desired functional
relation among the variables and properties can be
determined within a factor of order one compared to the
exact result. The exact value of the proportionality
coefficient cannot be affirmed by the order-of-magnitude
analysis (OMA). While it may be 47 or 34, for instance, both
are of the order of 101, it can be stated that the value will
neither be 0.87 nor 356. Determination of the exact value of
the proportionality constant requires the complete solution.

In many situations, the result of this analysis gives an
appreciable if not sufficient knowledge of the range within

which the driving forces interact in the described system.
The outcome can at least be considered noticeable, when
taking into account, that an “exact analysis” can a priori only
be exact in respect to how the observer describes the issue.

The following rules are formulated for the Order-of-
Magnitude Analysis:
• First Rule: The region in which the analysis is per-

formed must always be defined in its spatial extent. In
the first exa mple below, the size of the dimension of
interest is L, the plate’s length.

• Second Rule: Any equation expresses equivalence
between the order of magnitude of the two dominant
terms. In more complex equations it is essential to find
and equate only the important terms.

• Third Rule: If in a sum C of the two terms A and B, A’s
order of magnitude is greater than B’s, then the order of
magnitude of the sum C  is equal to A’s.

• Fourth Rule: If in a sum C of the two terms A  and B,
A’s and B’s orders of magnitude are equal, then the or-
der of magnitude of the sum C is equal to either A’s or
B's.

• Fifth Rule: In any product P = AB  the order of magni-
tude of the product P is equal to the product of the or-
ders of magnitude of the factors A and B. For a ratio R =
A/B the order of magnitude of the ratio R is equal to the
ratio of the orders of magnitude of the numerator A and
denominator B.
Notation: The symbol ˜  means equal in the order of

magnitude.

SELECTED PROBLEMS SOLVED WITH THE OMA
METHOD

Thickness of a Laminar Boundary Layer

This classical problem, first solved by L. Prandtl´s scholar
H. Blasius in 1908 [2], will be addressed and solved by
performing an order-of-magnitude analysis with respect to
the Navier-Stokes and continuity equations. A similar
approach of estimating the boundary layer thickness has first
been undertaken by H. Schlichting [3].

In an incompressible and two-dimensional flow the con-
servation of mass can be expressed by the continuity
equation Eq. (1):

0.
u v
x y

∂ ∂
+ =

∂ ∂
(1)
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FIGURE 1
BOUNDARY LAYER OVER A SUBMERGED FLAT PLATE

If a viscous fluid flows with the free-stream velocity u∞
along the x-direction over a flat plate with the length L,  a
boundary layer will develop as shown in Figure 1. In this
layer the fluid is decelerated in the x-direction but will
therefore gain a velocity component v in the y-direction. The
change of the velocity in the x-direction ∆u, can only be of
the order of the free-stream velocity u∞, whereas the change
in x-direction ∆x can only be of the order of the plate length
L. In the boundary layer the perpendicular velocity
component is defined to reach from zero near the plate
surface to the maximum value vδ at the edge of the boundary
layer, the range in which ∆v varies. The boundary layer itself
has the thickness δ, the maximum value for ∆y . From mere
observation we know, that the boundary layer thickness δ is
always very small compared to the dimensions of the
submerged body. So, from the above considerations we can
write

0.vu
L

δ

δ
∞ + ≈

This allows us to estimate the perpendicular velocity in
the boundary layer,

,v u
Lδ

δ
∞≈ (2)

to be of the order of the small but determinable fraction δ/L
of the free-stream velocity u∞. The time and effort required
to obtain this result (Eq. (2)) is significantly smaller when
compared with the labor necessary to solve for the velocity
distribution in the boundary layer and then for vδ.

Further, if the Navier-Stokes equation is simplified by
assuming two-dimensional, steady-state, and isobaric flow, it
may be written as

2

2 ,
u u u

u v
x y y

ξ
∂ ∂ ∂

+ =
∂ ∂ ∂

where ξ is the kinematic viscosity. The individual terms can
be replaced by the values they reach in the order-of-
magnitude

2
.u u uu v

L δ ξ
δ δ

∞ ∞ ∞
∞ + =

If now vδ is substituted by Eq.(2)

2
,u u uu u

L L
δ ξ

δ δ
∞ ∞ ∞

∞ ∞+ ≈

the boundary layer thickness can be found by algebraic steps

2 2

2
,

u u u
L L

ξ
δ

∞ ∞ ∞+ ≈

to be approximately

.
L u L
δ ξ

∞

≈

Considering the definition of the Reynolds number Rex =

ux/ξ, the final result is obtained

1
.

ReL
L
δ

≈ (3)

Results: The thickness of the boundary layer decreases
with an increase in the Reynolds number. More specific, the
boundary layer thickness increases with the viscosity of the
medium and decreases with the free-stream velocity of the
flow. The exact solution is given by Eckert and Drake [4] to
be 

4.64
.

ReL
L
δ

≈

The approximate result of Eq.(3) is found to be correct in the
order of magnitude.

Laminar Flame Propagation

Assume a combustible mixture of gaseous fuel and oxidant
in a long duct such as a cylindrical tube. Upon ignition of
this mixture at one end of the tube, a propagating flame front
will occur (Figure 2). Under steady propagation conditions,
let δ be the thickness of the flame. The combustion reaction
takes place within this thickness. As all reactants in the
volume element of cross-section A times flame thickness δ
are consumed, the flame will propagate into the premixed
fuel.

products
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FIGURE 2
LAMINAR FLAME FRONT PROPAGATING THROUGH A DUCT.

The questions of concern here are: how thick is the flame
front and what is the velocity u at which the flame will
steadily propagate? In order to identify the primary factors, a
mechanism has to be formulated and certain simplifications
introduced.
• Let the tube be insulated. This assumption is easy to

satis fy. The propagation is generally rapid so that heat
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conduction processes into and through the tube-wall can
be ignored.

• Heat transfer by means of radiation is considered
negligible.

• All physical properties involved such as density ρ, spe-
cific isobaric heat cp and mixture thermal conductivity k
are assumed to remain constant over the observed range
of temperature and location.
Let the entire energy release due to reaction be denoted

by the source term s [W/m3]. The heat released by the
combustion reaction in the observed flame volume is there-
fore

sourceQ sAδ=& (4)
Heat transfer from the hot products to the cold reactants will
take place by conduction. Across the flame front thickness,
the temperature gradient is assumed to be of the order of the
difference between the product and reactant temperatures
over the flame thic kness δ:

products reactantsT TT
x δ

−∂ ≈
∂

In conjunction with the thermal conductivity k  of the mixture
yields the heat flux density conduction ( ) /p rq k T T δ= −&  over the

cross-sectional area A, thus

products reactants
conductive

T T
Q kA

δ

−
=& (5)

The conducted energy will heat the gas flow by convection.
This convective part can be described as follows: Let the
coordinate system be fixed on the flame, which steadily
moves with the unknown velocity u. Then, the reactant mass
flow rate into the flame is m uAρ=& , where ρ is density.
This flow rate with an average specific heat cp is heated
from the supply temperature  Tr to flame temperature Tp
across the flame thic kness δ:

( ) ( ) .convective p p r p p rQ mc T T uAc T Tρ= − = −& & (6)

The order-of-magnitude approach is based on the
assumption that the foregoing three terms (Eqs. (4), (5), and
(6) are of the same magnitude to allow the determination of
the basic relationships between the parameters. Setting first
the conductive and convective heat transfer terms equal in
the order of magnitude,

( )products reactants ,p p r

T T
kA uAc T Tρ

δ

−
≈ −

yields
1

.
p

k
u

cδ ρ
≈

The term [k/ρcp] is given the symbol α and known as ther-
mal diffusivity describing the ease with which temperature
disturbances can be transported from one location to another
in a medium. Thus,

.u α
δ

≈ (7)

The conclusion that can be drawn from Eq. (7) is that thin
flames propagate faster than thick ones. Next, if the source
term is equated with the conduction term

products reactants ,
T T

kA sAδ
δ

−
≈

so that

( )
.p rk T T

s
δ

−
≈ (8)

Eq. (8) shows that for a given k , the flame thickness
primarily depends on the source strength s and the
temperature difference (Tp - Tr), which are dependent
parameters. Consequently, nothing else can be deduced from
the last equation. But if Eq. (8) is implemented in Eq. (7), a
new expression for u can be found and the final relations are

1

p p r

ksu
c T Tρ

=
−

(9)

( )
max

.pp r
s T TT TT

x kδ

−−∂
= =

∂
(10)

Results: The flame propagation speed can be estimated
from the properties k , ρ and cp and the reaction-specific
source term s. The reactant temperature Tr is known from
ambient conditions, the product temperature Tp can be
approximated by the adiabatic flame temperature, a quantity
determined solely by thermo dynamics. Preheating the
mixture, low specific heat and/or density, a high thermal
conductivity, and a high enthalpy of reaction ∆H° will
increase the flame speed. The derivation indicates that ρ and
cp influence u stronger as they appear with the power equal
to unity in the equation, whereas k , s and ∆T come into play
with the power of 1/2. Assuming a constant thermal con-
ductivity k  as well as constant product and reactant
temperatures Tp and Tr, an increase in the source strength s
will lead to a lower flame front thickness δ and hence a
stronger maximum temperature gradient. These results,
agree well with complete solutions of the flame propagation
problem first obtained by Landau and Lifshitz [5].

Terminal Velocity of a Sphere Falling in a Viscous Fluid

An arbitrarily shaped body falling in a viscous fluid will
accelerate due to gravitational attraction. Any force exerted
on a body is according to Newton’s Law equal to the body’s
mass m = ρV times acceleration a = du/dt

duF ma V
dt

ρ= =

where u is the velocity of the body. By the time it reaches a
constant velocity, called the terminal velocity ut, the problem
has attained steady-state and the contributing forces - grav-
ity, drag, and buoyancy - can be recognized as
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Gravity:  GF mg Vgρ= − = −
Buoyancy:  ( )B fF gV ρ ρ= −

21
Drag:  

2D f D tF C Auρ=

where the variables have the following meaning
V: volume of the body
g: gravitational acceleration constant
ρ: density of the body
ρ f: density of the surrounding fluid
A: pro jected body area (frontal)
CD: drag coefficient

According to Newton’s Law, the sum of the forces must
vanish at any point in time, also during acceleration.

0i
i

F =∑
G B DF F F= +

( ) 21
2f f D t

duV gV C Au
dt

ρ ρ ρ ρ= − + (11)

If this differential equation becomes one of steady-state,
the transient term ρV(du/dt)  vanishes, the terminal velocity
ut is reached, and the remaining force terms can be equated
in the order of magnitude

( ) 21
2f f D tgV C Auρ ρ ρ− ≈

to obtain an expression for the terminal velocity

2 2
1 .t

D f

gV
u

C A
ρ
ρ

 
≈ −  

 
(12)

The time to reach u = u t is gained by equating the order
of magnitude of the term on the left-hand side of the differ-
ential Eq. (11) with the order of magnitude of the buoyancy
term. Assuming that

tudu u
dt t t

∆≈ ≈
∆

yields

( ) 1
.

1

t t
f

f

u u
V gV t

t g
ρ ρ ρ

ρ
ρ

≈ − ⇒ ≈
−

If the relation for ut (Eq.(12)) is implemented, one obtains

2 1
.

1 fD

V
t

gAC ρ
ρ

 
 
 ≈
 

− 
 

(13)

For simplicity, the body is taken to be a sphere with ra-
dius R, so the volume is V = (4/3)pR3 and the frontal area A
= pR2. For this case the terminal velocity and the time to
reach it can be calcu lated:

8 8 1
1  and .

3 3
1

t
fD f D

gR R
u t

C gC
ρ

ρρ
ρ

 
    ≈ − ≈      − 
 

(14)

Results: For the case the drag coefficient is considered
constant, one can deduce from Eq.(14)
• Large spheres have a higher terminal velocity than small

ones since the gravitational force is proportional to the
volume (∝ R3) and the drag is proportional to the pro-
jected area (∝ R2).

• The higher the body’s density ρ in respect to the fluid’s
density ρ f, the higher ut.

• If the sphere’s density is much larger than the fluid’s
density, the time to reach the terminal velocity increases
with the radius R only. The smaller the difference in
densities, the longer it takes for the sphere to reach the
final velocity providing a constant radius.

• The qualitative drag coefficient CD stands for the
viscosity-induced skin friction drag in addition to form
drag due to flow separation. The more viscous the fluid
is, the lower the terminal velocity will be as well as the
time to reach it.

Comparison with analytical approach: For incompressible
flow, the Navier-Stokes equation of motion may be written
as

2 grad u u u p u
t

ρ ρ µ∂ + ⋅ ∇ = − + ∇
∂

while for reasonably low velocities and steady-state condi-
tion it may be written as

2 grad u pµ∇ =
Stokes´ Solution can be obtained when expressing this

equation in spherical coord inates and applying the zero-slip
boundary condition on the body surface. The total drag is
then found to be FD = 6pµRut. This relation is used to deter-
mine the drag coefficient by

2 2 2

6 12 24
1 1 Re
2 2

tD
D

f t
f t f t

RuF
C

RuAu R u

πµ µ
ρρ ρ π

= = = =

and used in Eq.(14)

( )
22 22 1

and .
9 9

1

f
t f

f

RgR
u t

g

ρ
ρ ρ

ρµ µ
ρ

 
 
 ≈ − ≈
 

− 
 

(15)

Comment: Even though the powers for the parameters in
Eq.(15) are different from the ones in the order-of-
magnitude analysis (Eq.(14)), all the conclusions drawn
from the order-of-magnitude analysis still hold when
compared with the more extensive analytical derivations.
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Penetration Depth of Disturbances

Time-dependent transfer processes are encountered in vari-
ous forms. How deep into the soil will freezing temperatures
penetrate when frosty winter weather surprises the delicate
vegetation of spring? How long will it take to smell the
perfume of the lady sitting down three rows away from you
in the movie theater?

The way diffusion of temperature, species and momen-
tum occur is illustrated by a microscopic view through what
is known as the random walk problem, to arrive at relations
for the collective behavior of gases. This issue was first
addressed and solved by A. Einstein [6] and is known as the
drunkard’s walk . It is desired to know, how far an object
will move away from a reference point in a given time
interval supposing it always changes its direction randomly
after a constant path length just as a drunkard would stagger
around a lamppost. Kinetic theory of gases concerns itself
with the behavior of a single, idealized particle in a large
ensemble of alike particles under thermal (Brownian) mo-
tion. The path length becomes the mean free path length λ
after which on average a collision with a fellow particle
takes place and the final distance to the starting point is
called average displacements.

Two important assumptions are employed:
• While one particle is observed, all others remain fixed.
• All particles are identical and behave like perfectly

elastic spheres (billiard ball model).
A particle moving a time interval ∆t with velocity u and

diameter σ  sweeps out a cylindrical volume ∆V = πσ2u∆t.
Since all other molecules are stationary in this idealized set-
up, all molecules in this volume element will be struck by
the observed one. There being n particles per unit volume,
the number of collisions in the time span ∆t is nπσ2u∆t . The
collision frequency is the number of collisions divided by
the elapsed time

2 .Z n uπσ= (16)
The number of steps taken in a given period of time is

therefore
.N Zt= (17)

If the mean free path length λ is the distance traveled by
the particle on an average between two successive coll isions,
it can be expressed as the distance traveled per unit time ∆t
divided by the number of collisions experienced in the same
time

2 2

1 .u t
n u t n

λ
π σ π σ

∆= =
∆

(18)

With these relations derived, the drunkard’s walk
problem can be approached. Illustrated by Figure 3, the
drunkard steps in a straight line for a fixed distance and then
randomly chooses a new direction and again steps in a
straight line for a fixed dis tance. In order to simplify this
problem, it is treated in the two dimensions x and y. After N
steps the mean displacement s from the origin is according
to Pythagoras´ Law

2 2 .N Ns x y= +

x

y

1
2

3

4

5
6

s

y(N)

x(N)

FIGURE 3
 PATH OF A PARTICLE UNDER RANDOM MOTION.

Each component xN, yN of the displacement s is the al-
gebraic sum of the corresponding components of the previ-
ous single steps

1 2
1

N

N N i
i

x x x x x
=

= + + + = ∑L

1 2
1

N

N N i
i

y y y y y
=

= + + + =∑L

2 2

2

1 1

N N

i i
i i

s x y
= =

   = +      
∑ ∑

( )2 2 2

1

1 1

1 1 1 1
1 1

2

N

i i
i

N N

i i N i i N
i i

s x y

x x x x y y y y

=

− −

+ +
= =

= + +

    + + +    
    

∑

∑ ∑
In each coordinate there will be as many positively as

negatively directed moves, so that on the average all mixed
terms will be cancelled out. What remains is

( )2 2 2

1

.
N

i i
i

s x y
=

= +∑
If the steps taken are equal to the constant mean free

path length λ, it must hold that
2 2 2 .i ix yλ = +

The mean displacement can now be stated in terms of
the number of steps taken and the mean free path length λ

.s Nλ=
Eqs. (16) to (18) are now introduced and we gain

2
2 2

1 uts n ut
n n

π σ
π σ π σ

= =

Results: The mean displacement from a given datum point
increases with the square root of the elapsed time. From the
preceding derivation one can expect that any kind of
diffusion process, whether this is heat, mass, or momentum
transfer, reveals this t½- behavior.

To verify this statement, an example is chosen, which
deals with a transient momentum transfer process. A hori-
zontal plane wall with an infinitely thick layer of a viscous
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fluid resting on it, is suddenly accelerated from rest. This
configuration, known as Stokes´ First Problem, is described
by the simplified one-dimensional Navier-Stokes Equation

2

2 .
u u
t y

ν
∂ ∂

=
∂ ∂

(19)

Comment: For a one-dimensional unsteady heat conduction
problem of a cold body suddenly heated on one side, this
equation would look like

( )2

2

pc TT
t y

ρ
α

∂∂
=

∂ ∂
where α is the thermal diffusivity, ρ the fluid’s density and
cp the isobaric specific heat. For the case of unsteady diffu-
sion of species (mass transfer) we can write

2

2
i iC C

D
t y

∂ ∂
=

∂ ∂
where D is the coefficient of diffusion and Ci the concentra-
tion of species  i. The similarity of the transport phenomena
of heat, concentration and momentum is illustrated and em-
phasized by showing the similarity of their mathematical de-
scriptions.

Going back to the plane wall problem, it is of interest
how the depth of penetration of the perturbed fluid will
change with time. The principles of the OMA allow us to
replace the differentials with differences, so that Eq. (19)
becomes 

( )2

u u
t y

ν
∆ ∆

=
∆ ∆

and we can solve for the penetration depth with ∆t = t
y tν∆ = (20)

In viscous fluids momentum is transferred by the means
of diffusion, i.e., the fluid dissipates energy by allowing
particles to transfer parts of their momentum or kinetic en-
ergy, respectively, in directions other than the general flow
direction. The thickness of the layer, which has been af-
fected by this process, grows steadily with the square root of
time.
Comparison with analytical approach: The flat plate
problem is defined with the following boundary conditions

0

  0 ( )  0
  0 ( 0)  

( )  0,

t u y
t u y u

u y

= =
> = =

= ∞ =
and the pressure is assumed to be constant in the fluid. The
substitution

2

y

t
η

ν
=

and assumption that u = u0f(η), leads to the ordinary diffe-

rential equation for f(η)
2 0f fη′′ ′+ =

The solution u = u0erfc(η) includes the complementary

error function

22
erfc( ) e ,dη

η
η η

π

∞ −= ∫
which can be found tabulated in any book of mathematical
tables. At η = 2.0 this function has a value of about 0.01, so
that at η = 2.0 the fluid has been accelerated to 1% of the
plate velocity. If this is accepted as reasonable value to as-
sess how deep the disturbance has propagated into the fluid,
we can define this distance y(u = 0.01u0) = δ, the boundary
layer thickness. From the substitution we can derive the final
result

2 4t tδδ η ν ν= ≅ (21)
Results: The analytical solution (Eq.(21)) and the one found
by OMA (Eq.(20)) applied to the simplified Navier-Stokes
equation, as well as the microscopic view on a single particle
in the random walk analysis, show a high consistency in
describing diffusion transport mechanisms. Disturbances,
whether in respect to temperature, concentration, or mo -
mentum, are shown to migrate with the square root of the
elapsed time into the observed material.

CONCLUSIONS

With four problems described, an engineering education
methodology is illustrated, which incorporates the distinct
advantage of roughly outlining the behavior of the variable/s
with a minimum input of time and/or mathematical com-
plexity. And yet, the engineering student gains considerable
knowledge by the order-of-magnitude analysis. The OMA is
more sophisticated than dimensional analysis in that it not
only suggests the dimensionless groups, but also a
functionality of their interdependence. What it cannot do, is
determining the value of the proportionality constant(s) in
this functionality. Exact solutions are required to do this
determination with the attended costs of time and effort. It is
the scientist, or engineer who decides what degree of
accuracy is sufficient and the model can be refined from
there on gradually.
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