
E-University

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
1

A Virtual Laboratory for Practical exercises

Amine Berqia1, Alassane Diop1, Jürgen Harms 1

1 CUI, Université de Genève, {berqia, diop, harms}@cui.unige.ch

Abstract Remote teaching and distant learning take more
and more a significant place in the universities. However,
much of courses do not propose practical exercises. The
goal of our project VITELS (Virtual Internet
Telecommunications Laboratory of Switzerland) is to
develop a course that provides practical exercises in the
area of telecommunications and computer networks to the
students. The exercises shall be performed by students
remotely. Students do not need to be present in particular
laboratory rooms. In addition, supplementary tutorial
material and theoretical on-line exercises are under
development. In total, seven modules and the
authentication/authorization infrastructure will be
developed and maintained by the different involved institutes
and integrated into a common web environment. The basic
course will consist of the following seven modules:
Simulation of IP Network Configuration, Configuration and
Performance Evaluation of a Real IP Network, Management
and Configuration of a Virtual Network, Firewalls, Protocol
Analysis, Linux System Installation and Configuration,
Client/Server Programming. The development of the course
by different partners allows to use the different available
equipment resources at the different locations and to use the
sophisticated technological knowledge and experience
available at the various partner organisations.
Given the innovation nature of the project the group in
Geneva decided to use the Linux System Installation and
Configuration module as an “apprenticeship”. In this paper,
we will present a remote laboratory for Linux Installation
and configuration.

Key-words: Remote teaching, Remote Lab, Practical
exercises , VITELS.

INTRODUCTION

Remote laboratories deal with performing real lab
experiments remotely via the Internet. The CUI "Centre
Universitaire Informatique", at the university of Geneva, has
in charge to develop and implement educational lab systems
enabling students to access via the Internet, real lab set-ups
situated either in a central location or distributed over
several remote areas.

The work is being performed within the project called
Virtual Internet and Telecommunications Laboratory of
Switzerland VITELS [1], which is one of several projects
within the Swiss Virtual Campus SVC [2] program funded
by the Swiss ministry of education and science. Each partner

of the VITELS project - four universities (Bern, Fribourg,
Genève, Neuchâtel) and one engineering school (Fribourg) -
is currently developing modules based on the own
competence and equipment. The seven modules focus on
Linux System Installation and Configuration, IP Network
Simulation, Configuration and Performance Evaluation of a
Real IP Network, Client/Server Programming, Protocol
Analysis, IP Security and Firewall Management. Each
participating university develops and maintains its modules
within its own laboratory environment, but allows remote
students to access and use the laboratory infrastructure via
Internet technology. The entire course must appear to the
user as being homogeneous, although it is distributed over
several locations in Switzerland. A web-learning
environment called WebCT [3] is used to lead through the
course modules.

COURSE SERVER

A typical scenario of a remote lab experiment involves the
following steps :

• Registration:
A student accesses the URL to perform the experiment.
If he/she is not a registered student the system should
ask the student to first register for the lab before trying
to perform the experiment. Once the student registers
he/she should be given a user login and password for
their future use. It should be noted that self-registration
is not allowed for any user. A student’s unique key-
login name is checked against a
database of students list.

• Logging-in: Once the student has a valid login and
password he/she can login to the remote real laboratory
server. He/she then can choose an experiment from the
list of experiments to perform.

• Performing the experiment: When a student starts
performing the experiment, he/she is able to enter input
values and submit them to the hardware. The hardware,
then, acts upon the input parameter and generates
results. The results are finally collected by the local host
computer and sent back to the student’s computer. The
student can rerun (submit different values to) the
experiment as many times as he desires. Once satisfied,
he can submit the results for grading.

Our remote course is basically the traditional one with the
big difference that it is remotely accessible over the Internet.
In order to offer that course in a superior manner than the

E-University

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
2

traditional one, the differences between both have to be
pointed out. Especially the differences concerning the
didactical aspects have to be found. It is obvious that in a
remote course that is open 24 hours a day. There are no
social contacts with other students during the laboratory or
students doing homework in the PC pool. But there are many
helpful tools that can at least partly replace these negative
aspects or even improve and accelerate the learning process.
A web-learning environment called (WebCT) is used to lead
through the course modules and we try to use all the tools
and features of this platform. The module structure is the
same as in the traditional course:

• Pre laboratory section: Students get an introduction
but not a mandatory list of readings. To select the
readings, students use the tool called “Self-Test” (our
“intelligent” reference management tool) and get, in
case of a wrong answer, a link or source for the best
readings.
When students feel ready, they can go to the tool called
“Quiz” that consists of multiple-choice and essay
questions. Essay questions have to be rated by a tutor.
Quiz results are logged and can be reviewed by tutors at
any time. After successfully passing the quiz, students
can access the remote course than in the traditional one
as there is at most times no personal assistance available
and the laboratory presence time is restricted to 4 hours.

• Laboratory section: The WebCT course pages lead
also through the practical work session. Students get
jobs, detailed explanations and hints in carefully
selected portions. For the practical work itself they work
in additional browser windows: – One window for
WebCT with the main course pages, where it is
indicated when and where to do what. – One window
for the module infrastructure overview, where students
see a graphic of the experimental set.

• Post laboratory section: Students have to prove what
they have learned before, sending commented traffic
dumps and logs from the practical work. Tutors have to
rate the traffic dumps and logs. In a final quiz with
multiple choice and essay questions students prove their
knowledge. WebCT offers chat rooms, news groups and
a White Board where students and tutors can exchange
real-time drawings on-line. There is an additional
glossary where course specific words are explained.

We propose to use the course platform WebCT that offers
many useful functions for student management and
especially for creating and automatically rating exercises.
Although WebCT offers news boards, chat, student mail,
white boards and more it is restricted in terms of designing
web pages. As a consequence, the portal servers run their
own web servers and provide parts of the course module

content directly to the student. The result is that the course
platform leads through the entire course, like a red thread,
but is supplemented with external content from external
sources.

There are many issues to solve for building such a course in
an open and distributed environment. One important issue
and at the same time a main obstacle to overcome is the
distributed course infrastructure with several modules placed
in five geographically distributed locations all over
Switzerland. Each partner should be able to create the
content of its own course modules rather independently.
Other important issues are user administration and security.
The courses are open to pre-registered students only. Since
users from several administratively independent institutes
need to access the entire course, we decided to build a
centralised database containing authentication and
authorisation data in the first phase of the project. In a later
phase we also intend to include accounting. On each site, an
entry point called gateway or portal, checks the accessing
persons based on the authentication result it receives from
the central LDAP directory as shown in FIGURE 1. There
are two LDAP servers shown because LDAP and our
architecture allow maintaining distributed directories, which
can be an advantage if already existing LDAP directories at
partner sites should be integrated in the remote course
structure.

FIGURE 1
GLOBAL ARCHITECTURE FOR THE VITELS COURSE

FIGURE 1 shows the possible connections in our
architecture. Students and administration personal can access
module and scheduling information on the central directory
server. Students can connect to the lab modules and portal

E-University

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
3

servers to query the directory, to check the student data and
the module state. For more details about the architecture see
[4] on our web page [1].

REMOTE LAB: LINUX INSTALLATION AND
CONFIGURATION

The team at University of Geneva CUI has in charge to
develop two modules for VITELS [1] project:
• Linux System Installation and Configuration;
• Configuration and Performance Evaluation of a Real IP

Network.
Given the innovation nature of the project, the team in
Geneva decided to use the Linux System Installation and
Configuration module as an “apprenticeship”. In this paper,
we present the remote laboratory with practical exercises for
Linux System Installation and Configuration.
The development of the remote lab is based on the complete
architecture shown in FIGURE 2 and the software tools
described below.

FIGURE 2
THE COMPLETE ARCHITECTURE OF THE MODEL

REMBO SERVER AND CLIENT DEPLOYMENT

A typical remote-boot sequence goes through the following
phases:
Power on: The remote-boot computer is turned on, either by
a user or by a wake-up event.
IP address discovery: The remote-boot client broadcasts a
DHCP request to get an IP address. Any DHCP server that
knows the client (i.e., recognizes its hardware address) or
that has a pool of freely distributable dynamic addresses

sends an IP address. The client takes the first answer and
confirms it to the server. In addition to the IP address, the
server will give some other network parameters to the client,
and information on the boot procedure to follow.
Boot server discovery: In the case of PXE remote-boot, the
client then proceeds to the discovery of the boot server (in
some cases the PXE process is happening at the same time
as the DHCP process). The boot server will be responsible
for delivering a network boot program to the client. It is not
necessarily the same computer as the DHCP server. The
client will answer to the first boot server that replies, and
download a small network boot program using a simple
multicast protocol (MTFTP).
NBP connection: If the network boot program is REMBO
[5], the client will establish a secure connection to the
server, and get an information packet from the NBP service
on the server. This packet includes parameters specifying
how the computer should be configured, the group to which
the computer belongs to, whether I/O devices should be
locked, what file server and backup file server it has been
attributed to and what is the startup page to load.
Pre-OS configuration: REMBO will then perform the tasks
as defined in the startup page. To acomplish these tasks,
REMBO may use its multicast protocol to download
required files. The exact list of tasks is defined in HTML
pages and Rembo-C scripts. Many actions can be performed
to put the computer in a well-defined state and ensure a
failproof startup.
OS booting: If the scripts contain a OS boot command, or if
the user has interactively selected an OS boot option with
the graphical user interface on the client, REMBO will
remove itself from the memory, and let the computer start
the operating system, as if the computer was booting
normally from the hard disk. This ensure a full compatibility
with the operating system, and avoid all problems of the
traditional diskless remote boot (i.e. REMBO is not present
in the memory when the OS has started).

REMBO-C SCRIPTING

Scripts are useful to automate your management operations,
and to handle special operations that are not covered by the
standard wizards distributed with REMBO.
You can perform a number of tasks by just a few clicks
using REMBO wizards. REMBO Professional and REMBO
Enterprise even include wizards to setup automatic operating
system restauration and boot menus. However, if you cannot
use them for your purpose, you will need scripting to design
your own automated procedures. Scripts are also very
convenient if you often have to build disk images and do not
want to have to do it interactively.
When a REMBO client computer is started, it starts by
loading its startup page (as defined in the server
configuration, by default rembo.shtml). The body of the
page is displayed on the desktop, and if there is a <SCRIPT>

E-University

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
4

section in the page, it is compiled and executed. This is the
place to put your custom automation code.

FIGURE 3
EXAMPLE OF A SCRIPT REMBO-C

REMOTE ADMINISTRATION BY WEBMIN

Webmin is a web-based interface for system administration
for Unix. Using any browser that supports tables and forms
(and Java for the File Manager module), you can setup user
accounts, Apache, DNS, file sharing and so on. Webmin
consists of a simple web server, and a number of CGI
programs which directly update system files like
/etc/inetd.conf and /etc/passwd. The web server and all CGI
programs are written in Perl version 5, and don’t use
standard Perl modules.

VIRTUAL NETWORK COMPUTING

VNC (Virtual Network Computing) [7] stands for Virtual
Network Computing. It is, in essence, a remote display
system which allows you to view a computing 'desktop'
environment not only on the machine where it is running,
but from anywhere on the Internet and from a wide variety
of machine architectures. In our module, Linux Systems
Installation and Configuration we use Xvnc. Xvnc is the
Unix VNC server, which is based on a standard X server.
Applications can display themselves on it as if it were a
normal X display, but they will actually appear on any
connected VNC viewers rather than on a physical screen.

FIGURE 4
VIRTUAL NETWORK COMPUTING

So Xvnc is really two servers in one. For the applications it
is an X server, and to the remote VNC users it is a VNC
server. By convention we have arranged that the VNC server
display number will be the same as the X server display
number, which means you can use eg. snoopy:2 to refer to
display 2 on machine 'snoopy' in both the X world and the
VNC world. Normally you will start Xvnc using the
vncserver script, which is designed to simplify the process,
and which is written in Perl. You will probably want to edit
this to suit your preferences and local conditions. We
recommend using vncserver rather than running Xvnc
directly, but Xvnc has essentially the same options as a
standard X server, with a few extensions. Running Xvnc -h
will display a list.

 STUDENT STEPS IN OUR REMOTE LABORATORY

Students with login and password have access to the
common VITELS course platform on WebCT [3]. The first
stage is to follow the course suggested by one of the 7
modules. Once the student is ready to make the practical part
he must book a slot on the scheduling.
The Linux module consists in learning to the student how to
install and configure a distribution Linux Mandrake.

E-University

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
5

The student needs only a web browser to carry out practical
work of the Linux module. Once connected to our remote
laboratory, the student carries out all the operations on a real
machine that is allocated to the student during one slot. The
Steps of the installation and configuration are similar to the
installation and configuration from a CD. The design of the
environment is similar to design of the distribution Linux
Mandrake with our contents.

FIGURE 5
VITELS COURSE PLATFORM

FIGURE 6
INSTALLATION AND CONFIGURATION STEPS

CONCLUSION

In this paper the concept of real laboratories over the
Internet called remote real lab has been proposed and
realised as a part of our project VITELS. Linux Installation
and Configuration has been presented as an example of a
remote real lab. We can see that our environment provides
students the freedom of times and locations to conduct real
practical exercises without a physically lab attending.

REFERENCES

[1] Virtual Internet Telecommunications Laboratory of Switzerland,
http://www.vitels.ch

[2] Swiss Virtual Campus, http://www.virtualcampus.ch

[3] WebCT, http://www.webct

[4] Steinemann, Zimmerli, Jampen, Braun, "Architectural Issues of a
Remote Network Laboratory", 2001, NL2002.

[5] Rembo, http://www.rembo.com

[6] A. BERQIA, A. DIOP, J. HARMS, "A complete Architecture of a
Virtual Telecommunications Laboratory", International Conference
on Tele-Education in Mechatronics Based on Virtual Laboratories,
Weingarten-Germany 17th-21th July 2001.

[7] AT&T Laboratories Cambridge 1986;
http://www.uk.research.att.com/vnc

[8] MandrakeSoft SA 1998, 1999, 2000, 2001, 2002;
.http://www.mandrakelinux.com/

