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Abstract  In this paper, we describe the design and
implementation of a remote virtual laboratory for
monitoring physical infrastructure over the Internet.  The
context of this work is Project I-Campus at MIT, which
includes several efforts to provide remote access to
laboratory facilities.  Our focus on building a virtual
laboratory was to study the behavior of a flagpole under
wind loading.  Such a laboratory can be used for illustrating
concepts in structural dynamics, signal processing and
sensor technologies.  We discuss some of the issues that
were encountered in designing the software and hardware
components of our outdoor laboratory and its associated
Web interface. We also provide examples of applications
where live data published on the Web is processed using
Java applets.  The Web provides a framework within which
the field data and computer simulations are integrated to
provide a set of hands-on tools for teaching engineering
principles.  Our system has also provided a platform for
similar virtual laboratories, which are being developed at
MIT.

Index Terms  Civil engineering infrastructure, Remote
virtual laboratories, Web-based monitoring.

INTRODUCTION

Virtual laboratories for engineering education often take on
the form of a traditional laboratory apparatus that is accessed
remotely over the Internet.  This approach fits the traditional
model of a laboratory as a controlled environment for
conducting experiments.  Virtual laboratories of this kind are
frequently used to extend the reach and availability of test
equipment, which is usually a limited resource because it is
too expensive to replicate or because access must be
restricted for security or safety reasons.  Providing a web
interface to existing laboratory infrastructure was in fact, the
primary motivation behind many of the I-Labs being
developed as part of Project I-Campus at MIT.  Some of the
laboratories that have been developed under this framework
include the Microelectronics WebLab
(http://weblab.mit.edu) for studying the characteristics of
semiconductor devices and the Heat Exchanger laboratory
(http://heatex.mit.edu) for studying chemical process control.

While these are valid examples of virtual laboratories,
there are significant educational advantages in expanding
our earlier definition to include remote access to real-world

engineering systems that cannot be easily studied in a
traditional laboratory setting.  With a real-world system, one
can observe and appreciate the interplay between the various
components of the system as well as the higher levels of
uncertainty associated with practical operating
environments.  However, this might not be feasible in many
instances, (e.g. civil engineering and aerospace structures),
because the scale and complexity of the system make it
impossible to appreciate its intricate nature through direct
observation alone.  Providing a virtual interface to such
physical systems can lend deeper insight because different
physical or functional aspects of the system may be
juxtaposed in an educationally significant manner within the
virtual environment.  Studying a real physical system
through a virtual environment also allows for observations of
the actual behavior to be seamlessly integrated with
simulated behavior.  For example, one might wish to initially
observe the response of a structure under real loading and
subsequently predict how the structure fails when the loads
reach extreme values.

In this article, we describe the implementation of such a
virtual interface around a real-world system and in
particular, address the problem of monitoring in real-time,
the deformation of a 102 ft (31 m) tall flagpole subjected to
wind loading.  The structure is located close to Boston’s
Charles River, in an area where wind conditions have
historically been a significant factor in the design of
buildings.  We also describe the implementation of the web
interface to our laboratory (accessible at
http://flagpole.mit.edu) that enables clients anywhere on the
Internet to access real-time and archived measurements of
the response of the structure.  Some of the unique hardware
and software challenges that had to be addressed during the
implementation of such an outdoor laboratory are discussed
in the subsequent sections.

Objectives

The intent behind our effort was twofold.  The first
major objective was to expose students to recent advances in
sensors, communications and information technology, which
play an increasingly important role in the design, operation,
maintenance and emergency management of large-scale
infrastructure projects.  This objective was accomplished by
involving students in the design and development of the
virtual laboratory, in part through class projects.  The need
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for such exposure was based on the observation that students
frequently have highly specialized knowledge in a particular
domain, (e.g. software, sensors, signal processing, structures
or transportations systems,) but only a limited appreciation
for how these specialties can effectively work together in
practice.  This is supported by the observation that even
when large infrastructure projects are instrumented with
sensors, there tend to be inadequate tools for collecting and
processing the large amounts of data involved.

The second objective was that once built, our laboratory
would be used for teaching purposes.  The Flagpole WebLab
provides real-time measurements of acceleration at various
points on the structure.  A task that students might perform
using the acceleration data is to determine the modal
frequencies of the structure, which in turn can be used to
estimate its material or geometric properties.  In fact, good
agreement has been observed between the modal frequencies
observed in practice and those predicted with a finite
element model.  Similarly, students might analyze the
acceleration data to estimate damping, to estimate and
remove noise (the noise in this case is partly electrical noise
from the sensors and partly mechanical noise from the flag
and the flagpole cord), or to detect unusual wind patterns
that suggest an approaching storm.  A parallel data collection
system is the photovoltaic weather station
(http://pvbase.mit.edu/index.html ), which collects data for
wind speed and direction.  This, together with the flagpole
data collection system provides students with the ability to
study cause and effect.

We believe that apart from its evident didactic benefits,
the framework that we have developed for our laboratory
also has important practical applications in real-life
situations.  For example, there has been an increasing trend
in recent years towards the design of motion sensitive
structures, where deflection rather than strength is the
governing criterion.  Such motion sensitive structures are
controlled by active control devices, which apply a
compensating force to keep the response of the structure
under acceptable limits (see [1]).  Therefore, accurate real-
time measures of the response of the structure are essential
inputs to the active control algorithm. Another emerging
application of real-time monitoring is in the detection of
distress in structures, be they nuclear reactors, historical
monuments or tunnels.  Using an interconnected network of
sensors, one has the ability to predict and even prevent
mishaps due to structural failure, which might otherwise lead
to catastrophic damage to life and property.  These ideas are
in fact fundamental to the concept of an I-City (see [7]),
which envisages a large-scale network of sensors around an
entire metropolis linked to a web-based monitoring and
diagnostic system.  It has been proposed that such a system
could be invaluable during emergencies by helping to
significantly reduce the impact of catastrophic events.

Outline

The outline of the rest of the paper is as follows:  In the next
section, we describe the hardware components of the project
in detail.  In particular, we discuss the sensors and data
acquisition system used and address issues such as powering
the sensors, interfacing the sensors with the data acquisition
systems and resolution and sampling rates for the different
sensor modules. We also discuss many steps taken to ensure
long-term durability and accuracy of the sensors.

The section after that discusses the implementation of
the software framework of our effort, which can be divided
into its server and client components.  The server side
components consist of data acquisition and data archival
programs and the client side components consist of Java
applets and Microsoft .NET controls, which process real-
time and archived data in various ways.  These software
tools are supplemented by educational simulations that
illustrate concepts in structural dynamics and signal
processing.  We then present a number of scenarios in which
the tools developed as part of our laboratory have been, or
can be utilized in a classroom setting.  The infrastructure that
we have developed for the “Flagpole WebLab” is generally
applicable and therefore, we describe how this framework
can be extended to other situations.  Finally, we present our
conclusions and suggest avenues for further investigation.

HARDWARE ARCHITECTURE OF THE FLAGPOLE
WEBLAB

Sensors

For our virtual laboratory, we chose to monitor the
accelerations along two perpendicular axes at three points
(labeled #1, #2 and #3 in Figure 1) along the length of the
flagpole.

         
FIGURE. 1

THE FLAGPOLE AGAINST THE BOSTON SKYLINE (LEFT) AND LOCATION OF
THE ACCELEROMETERS (RIGHT).
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The locations of these points were chosen as the points of
maximum deflection of the first three modes of the flagpole,
as determined from a  finite-element simulation.  In addition,
a thermocouple was used to monitor the ambient temperature
at the flagpole’s base.

For measuring accelerations, three CXL02LF3
accelerometers manufactured by Crossbow Technology were
used.  A few salient characteristics of these lightweight, low
power triaxial accelerometers are summarized in Table I.

TABLE I
SALIENT CHARACTERISTICS OF CXL02LF3 ACCELEROMETERS

Sensitivity 1 V/g

Acceleration range ± 2g

Supply voltage 5 V

Zero acceleration voltage 2.5 ± 0.15 V

The accelerometers were secured inside durable watertight
aluminum containers and connected to the data acquisition
system via shielded cables.  Since an ideal solution in an
outdoor environment would consist of sensors with
integrated microprocessors and short range wireless data
transmission capabilities, a solution that was considered was
the CrossNet wireless node, CN1100, from Crossbow (with
power consumption of under 1W, a range of 100m and a
sampling frequency of 500Hz).  However, the  version of
this Bluetooth-based solution available during the
installation of the sensors did not meet our range
specifications.  A solution that has subsequently become
available from Crossbow is the MICA motes wireless sensor
network.  Each sensor node of this research prototype has an
on-board microprocessor, which runs the UC Berkeley
TinyOS operating system.  The power consumption is on the
order of 100mW with a radio range of 200ft.

Data Acquisition System

A data acquisition system is used to collect data from the
sensors, preprocess it in some manner (for instance by
amplifying or band-limiting the signal from the sensors),
digitize the signals using an analog to digital converter, and
transmit the data samples in some manner to a host computer
where it can be further processed.  Normally, many of these
functions are carried out by dedicated data acquisition cards
based on the PCI or PCMCIA architectures, which directly
plug into a data acquisition computer.  However, this
solution is not suitable for an outdoor laboratory such as
ours.  Instead, we used the FieldPoint distributed data
acquisition system manufactured by National Instruments.

A typical FieldPoint installation (shown in Figure 2)
consists of the following components:
• One or more Sensor Input Modules, which interface

with different types of sensors.  These modules perform
various functions such as filtering the data and digitizing
the output from the sensors, and,

• A Network Interface Module, which is connected to the
sensor input modules via a high-speed bus.  This module
also connects to a host computer through an Ethernet or
a serial (RS-232) link.  The network interface module
also provides power to all the other sensor input
modules.

One of the advantages of a FieldPoint installation is that
new sensor modules can be added easily and the installation
can be configured using a simple software tool.  An
additional advantage is that since each FieldPoint installation
can function independently, a single computer may be used
to acquire data from many such distributed installations.
The host computer accesses data from a FieldPoint sensor
bank by periodically polling the corresponding network
interface module (This is referred to as an advise operation).

          

   

Network Interface Module 

Sensor Input Modules 

RS-232 Link 

FIGURE. 2
A TYPICAL FIELDPOINT INSTALLATION.

In selecting appropriate sensor input and network
interface modules for a FieldPoint installation, attention
must be paid to the desired sampling rate and resolution.
Unlike plug-in data acquisition cards, where the sampling
rate is governed only by the analog to digital converter in the
card, the effective sampling rate of a FieldPoint installation
is governed both by the sampling rate of the sensor input
modules as well as the network throughput rate of the
network interface module [6].  Therefore, the attainable
sampling rates for FieldPoint installations are usually much
lower than those for PCI based measurement systems and
can be found in [4].  For our monitoring project, acceleration
and temperature measurements were required at 10 and 160
millisecond intervals respectively.  Hence, the following
FieldPoint configuration was used:
• The three accelerometers were connected to three dual

channel voltage input modules (FP-AI-V10), which
have a sampling rate of 2.8 milliseconds, a voltage range
of 0 to 10 Volts and a 12 bit resolution.  These modules
in turn connected to a common terminal base (FP-TB-
10).  Initially, we had experimented with FP-AI-110
analog voltage input modules, but these did not have
sufficiently high  sampling rates.



Innovations in Virtual and Remote Laboratories

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
4

• The thermocouple was connected to a thermocouple
input module (FP-TC-120),

• The network interface module used was FP-1000, which
is a serial communication module with a data transfer
rate of 115.2 kilobits/sec.  Here again, we had initially
experimented with FP-1600 Ethernet modules, with the
intention of making the data acquisition system wireless
by replacing the ethernet cable with a pair of ethernet to
(802.11b) wireless converters.  While this approach
worked for relatively low sampling rates, it was
unsatisfactory for our application because the Ethernet
module lacked an onboard buffer, which resulted in each
transmitted packet containing only one sample per
sensor channel.  This problem has been addressed in
newer Ethernet modules, such as the FP-2000.

The sensors were installed on the flagpole and wired to
the data acquisition system in mid-February 2002 (see
Figure 3 for photographs taken during the installation
process).  In mid-March, an underground cable was laid
between the data acquisition system and an indoor computer.
Our system has been operational since without interruption.

                   

FIGURE. 3
INSTALLATION OF THE SENSORS (LEFT) AND ONE OF THE ACCELEROMETER

BOXES (RIGHT, CIRCLED).

SOFTWARE FOR DATA COLLECTION, ARCHIVAL
AND RETRIEVAL

Once the hardware (sensors and data acquisition system) was
installed, it was necessary to write software to perform the
following functions on the host computer:
• Poll the instrument periodically and obtain data from the

different sensor input modules,
• Make real-time data accessible to clients on the Internet,

and,
• Archive the data and handle requests for historical

records.

All the software components written for our project can
be accessed at  http://flagpole.mit.edu/software.html.

Data Collection and Dissemination

The first two tasks were easily accomplished using a
software solution from National Instruments called
LabWindows/CVI.  This environment provides C libraries,
which can be used to connect to a FieldPoint installation and
extract data from the network interface module.  National
Instruments also provides an API known as DataSockets
(see [5]) for sharing data in real-time between clients in
different platforms.  Instead of looking at the source of data
as a server, and the application accessing it through the
network as a client, the DataSocket API has the notion of a
publisher and a subscriber, respectively. In addition, there is
a DataSocket server, which is a program handling all the
communication between the two. The publisher first binds to
a unique URL on the DataSocket server and publishes data
to that URL.  Various subscribers can then access the data
published by reading data from the same URL (see Figure
4). The DataSocket API thus handles many of the low-level
implementation details and provides a convenient
mechanism for transferring data among different programs
on different platforms.

FIGURE. 4
EXCHANGING DATA USING DATASOCKETS.

Data Archival

Due to the high volume of acquired acceleration data, it was
found that archiving it on the same machine placed a heavy
burden on the CPU, which adversely affected the data
acquisition process.  Hence, it was decided to adopt a
distributed solution with two machines, one of which served
as a data acquisition server and the other which served as a
database server.  However, this solution in turn lead to a few
difficulties, which are discussed subsequently.

The archived acceleration and temperature records are
stored in a Microsoft SQL Server 7.0 database.  However,
we realized that archiving the entire acceleration record in
the database was very expensive in terms of storage space
and retrieval time.  Therefore, it was decided to store
acceleration data only for the past 24 hours in the database;
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data older than a day is purged from the database and stored
in zip files. Whenever data older than a day is required, it is
extracted from the zip files and uploaded into the database.
Storing the temperature data did not pose this problem
because it is sampled less often; moreover, since ambient
temperature varies rather slowly, only one sample out of 100
is actually stored in the database.

The program which archives the data and purges
acceleration data older than a day is implemented in Java.  It
subscribes to the data published on the DataSocket server by
the data acquisition program.  The acceleration records are
first buffered in a text file.  At the end of each minute, this
text file is inserted into the database and added to a zip
archive.  It was found that this sequence of operations was
far more efficient than directly inserting each record into the
database from the Java program.  At the end of each hour, a
new zip file for the acceleration records is created, and data
older than 24 hours is purged from the database.  The
temperature data is directly inserted into the database every
16 seconds (i.e., 100 times less often than it is sampled).

One of the difficulties we experienced due to the
distributed nature of our system was that there were now two
points of failure: the data acquisition server and the database
server.   Of the two, the former was observed to be more
critical, and recovery from such failures required manual
intervention.  To make crash recovery automatic, a thread
was implemented in the data archival program that
periodically checks the status of connection with the data
acquisition server, and starts up or shuts down the archival
program depending on whether the publisher is online or not.

Data Retrieval from the Database

One of the goals of creating the server-side software was to
ensure that it would be easy for students to write their own
programs (i.e. Java applets or .NET controls) to access real-
time and archived data.  While it is fairly straightforward to
access archived data from Java programs using the JDBC
(Java Database Connectivity) API (see [2]), it was decided to
write our own interface over JDBC to provide a convenient
mechanism for data access.  The implementation of this
layer was necessary for another important reason: by default
applets running within a browser can make network
connections only to the host from which they are served.
Hence it would not be ordinarily possible for an applet to
acess both real-time and archived data simultaneously, since
these are served from different machines.  However, our
database interface runs as a standalone application on the
data acquisition server and is hence not bound by this
restriction.  Our interface also validates all queries and
ensures that only a reasonable amount of data is queried at a
time from the database.

The database access layer was written using the Java
Remote Method Invocation (RMI) API (see [8]).  This
collection of libraries allows Java programs on one machine
to invoke methods on Java objects existing on other

machines.  The RMI layer implemented for our project
provides two methods for accessing acceleration and
temperature data respectively.  Each of these methods
validates the input and executes the query on the database.
The result from running the query is then sent back to the
Java applet.

In addition to the RMI interface, archived data from the
database is also made available through a servlet (accessible
at http://flagpole.mit.edu/jsp/DBInterface.jsp). While this is
not as interactive as an applet (the interaction is via HTML
forms), it does not require a Java virtual machine on the
client web browser and is often more convenient.

SOFTWARE APPLICATIONS FOR THE VIRTUAL
LABORATORY

As mentioned in the introduction, one of the goals of
building our virtual laboratory was to enhance the
comprehension of concepts in structural dynamics, sensor
technology and signal processing using a real-world
structural system as a laboratory model.  In this section, we
describe a few software applications, consisting primarily of
Java applets, which were developed towards this goal.
These software tools can be divided into two categories: the
first category consisting of applets which process real-time
data in different ways and the second category consisting of
applets which illustrate concepts in structural dynamics and
signal processing using numerical simulations.  In addition,
we also made it convenient for students to write their own
programs to process real-time and archived data.

Applets which access and process real-time and
archived data can be found at
http://flagpole.mit.edu/realtime.html .  In these programs,
real-time data is accessed using a Java (or .NET)
implementation of the DataSocket API and archived data is
accessed using the Remote Method Invocation layer
described in the previous section.  Some of the applets that
belong to this category are:
• DataSocket Reader Applet

(http://flagpole.mit.edu/datasocketreader_frames.html).
This applet simply reads real-time acceleration and
temperature data published by the data acquisition
program and plots the acquired data on a time axis.  It
also displays temperature variation over the past 24
hours.  While this applet only acquires and displays raw
data, it can be used as a template for implementing
many data processing algorithms such as denoising or
data compression.

• Wavelet Decomposition Applet
(http://flagpole.mit.edu/wavedec_frames.html). Wavelet
decomposition of a signal, see Figure  5, provides a joint
time and frequency localization capability that is
superior to a windowed Fourier transform. This applet
performs a three level wavelet decomposition of the raw
acceleration data to identify frequency bands in the
signal with maximum energy.  Wavelet transforms have
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the advantage that they can help identify frequencies of
interest and the time of occurrence almost in real time.
This applet also performs a fast Fourier transform of the
data every 1024 samples to identify the dominant mode
of vibration and illustrate the tradeoffs involved in using
the two methods.  The wavelet decomposition applet can
be further extended to process the signal in different
ways.  An applet which denoises the signal in real-time
by doing a wavelet decomposition can be found at
 http://flagpole.mit.edu/denoise_frames.html.  .

FIGURE. 5
SCREENSHOT OF THE WAVELET DECOMPOSITION APPLET.

In addition to the above, applets which illustrate
concepts in structural dynamics and signal processing can be
found at http://flagpole.mit.edu/education.html. Some of
these applets include:
• Tuned Mass Damper Applet

(http://flagpole.mit.edu/applets/TunedMassDamper/Tun
edMassDamper_plugin_1.3.html).  This applet simulates
the response of a building with a tuned mass damper
system.  Unlike viscous dampers, tuned mass dampers
are inertial systems, that is, the damping is provided by a
mass moving out of phase with the building.  This applet
can be used to illustrate the principles behind optimal
design of such a tuned mass damper for a building
subjected to wind and earthquake loads.  Figure 6
illustrates the working of the tuned mass damper applet.

    
FIGURE. 6

THE TUNED MASS DAMPER APPLET.

• Mohr’s Circle Applet
(http://flagpole.mit.edu/applets/mohr2/mohr2_plugin_1.

3.html ). This applet is an interactive simulation of the
Mohr’s circle,  which is a graphical tool to determine the
stresses along different planes passing through a point.

Many of these software tool were developed as class
projects for graduate level courses on Wavelets and
Filterbanks and Software Engineering.  The simulation tools
were used in several courses in the Department of Civil and
Environmental Engineering such as Civil Engineering
Materials, Structural Dynamics and Motion Based Design.

SUMMARY AND CONCLUSIONS

In this article, we described the design and implementation
of a virtual, web-accesible interface to a real-world struture.
We also described the utilization of our laboratory in an
engineering curriculum to enhance the comprehension of
physical principles.

The framework developed as part of our project has
been succesfully applied to other similar virtual laboratories,
such as one involving the measurement of hydrological
parameters in wells around the MIT campus.  In the future,
we hope to extend the scope of our project to other larger
civil engineering infrastructure systems.
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