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Abstract   The aim of this paper is to present our
experience focused on the design of didactic units to teach
the oscillatory behavior of simple structures. With the
utilization of Java technology we develop and build an on-
line interactive learning environment comprised on
simulations of oscillators and simple structure vibrations
that can be used to support lectures for undergraduate
students. At the same time, these units are an answer to the
number of request from working engineers to update and
refresh their technical basic notions. The concisely
packaged units include text, examples and graphics,
mathematical content, hands-on proposals and questions
that accompany the animations.

Index Terms  Education, Oscillation, Simple Structures,
Multimedia, Teaching Materials.

INTRODUCTION

Engineering education is facing a great challenge to meet
new demands of the knowledge market as result of the effect
of globalization. During the past years there has been an
increasing demand for distance learning and on-line learning
courses to fulfill both initial and continuing education.

Likewise, in the field of engineering design, vibration
analysis is an important factor, since certain resonance may
lead to the failure of structures or to noise/sound production.
Conventional methods for vibration analysis are based either
on theory or on experiments. However experiments can be
extremely expensive and practical problems are either too
difficult or simply impossible to accomplish by analytical
methods. Therefore, numerical simulations play a more and
more important role in modern vibration analysis.

Beams and plates (rectangular or circular) with different
boundary conditions are key components in mechanical
engineering and industrial design. As a matter of fact, we
can cite, for example, the components of major structures as
bridges, buildings or aircraft wings, circuit boards in
electronic industry or some parts of musical instruments.

From an educational point of view, although vibrations
of structures can be difficult to understand, the animation of
analytical results seems to be a useful tool to improve
student’s understanding.

BACKGROUND

In a previous work [1], the authors have proposed a project
focused towards the development of an education module of
Acoustics. The module was presented in the form of an
interrelated set of didactic materials: on-line materials [2]
and books and CD-ROM materials.

On-line materials are thought to be a module of
Acoustics for engineering students or engineers’ continuing
formation developed in various chapters. In their design we
take into account several features such as gradual progress,
completion, flexibility and easy accessibility. The books and
CD-ROM are specifically designed as a helping and
complementary tool for teachers.

The complete module will cover some aspects of
Acoustics, focused around Basic Principles, Musical
Acoustics and Noise. The list of these general topics is:
Basic Principles of Acoustics: Vibrations and Waves;
Musical Acoustics: Musical Instruments; Architectural
Acoustics; Electroacoustics; Noise and Physiological
Acoustics.

On-line materials include text, examples and graphics,
mathematical content, hands-on proposals and questions that
accompany the animations. Their general schema is:

• Objective
• Description
• Examples and Simulations
• Questions
• Bibliographic, Multimedia and Web resources
• Self exam
• Links

STRUCTURE VIBRATIONS

The aim of this work is to present some aspects of the
didactic units that we are developing in order to teach the
oscillatory behavior of simple structures. These units are
included in the general topic “Basic Principles of Acoustics:
Vibrations and Waves”, but they are related with others as
“Musical Acoustics: Musical Instruments” or “Noise”.

The vibration properties of some one-dimensional
(strings and bars) or two-dimensional continuous systems
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(membranes and plates) are significant in later understanding
and knowledge of the dynamic analysis of structures. We
study how motions of strings, bars, membranes and plates
can be described, the influence of boundary conditions and
how the vibration frequency dependence on some physical
parameters is [3-6].

In order to achieve the best understanding of this
vibration behavior, we combine lectures and lab
experiments. We try to stimulate the creative and motivated
self-study by means of the study guide that also enables to
check the actual knowledge through selected self-exam
questions. In each case, the guide summarizes the objectives
and the description of the phenomena and it also introduces
the lab experiments. On the one hand, we consider Hands-on
Lab experiments that allow students to visualize specific
phenomena and obtain experimental skills [7]. On the other
hand, Virtual Lab experiments based on Java applets allow
the manipulation of parameters, which are difficult to control
in real lab experiments, and visualization of theoretical
processes, in an interactive environment. These experiments
can be performed at home, through the Internet. In addition,
teacher can introduce them in a computer room as Prelab
exercises, before starting the conventional lab experiments.
In both cases, it is important to follow the step-by-step
proposed methodological sequence avoiding the compulsive
“click” touch.

In terms of multiple representations, the main goal of
solving physics problems is to represent physical processes
in different ways (words, sketches, diagrams, graphs, and
equations) rather than relying on formula-centered
techniques that lack qualitative understanding. The abstract
verbal description is linked to the abstract mathematical
representation by the more intuitive pictorial and
diagrammatic physical representations. The qualitative
physical representations build a bridge between the verbal
and the mathematical representations, helping students to
move in smaller and easier steps from words to equations.
They also help students to develop images that give the
mathematical symbols meaning. After representing the
process, students can obtain a quantitative answer to the
problem using the mathematical representation.

In the next sections we include the objectives,
descriptions and some simple examples and simulations of
the vibration behavior of strings, bars, membranes and
plates. Besides, there is a general description of the applets
construction.

TRANSVERSE VIBRATIONS OF STRINGS

Objective

We shall study the transverse motion of the string. We shall
focus on the fundamental resonance frequency f1, the
frequency of successive overtones and their relationship with
f1.

Description

We shall use the string of length L under a tension T. We
assume that the string has negligible transverse dimension,
that its mass is distributed uniformly  (ε per unit length), that
is perfectly flexible and that it is connected to massive non-
yielding supports.

If we suppose a string stretched under a tension T, its
equilibrium position will be straight-line. We designate a
point on the string by giving its distance x from some origin
while in its equilibrium position. The motions we shall study
involve the transverse displacement of the point x an amount
y to the equilibrium line. Transverse waves are propagated
along the string with a velocity c. The relationship between
the dependence of y on x and its dependence on time t is
given by the second-order equation
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which is called the wave equation.
Actual strings are fastened at both ends, so that two

boundary conditions are imposed: y must always be zero
both at 0x=  and at Lx= . The general solution represents
two waves of the same frequency and wavelength, traveling
in opposite directions along the strings. If the amplitudes of
the two simple-harmonic waves (the normal modes of
vibrations) are equal the combination is called a standing
wave. The points where the two traveling waves always
cancel each other and the string never moves are called the
nodal points of the wave motion. Halfway between each pair
of nodal points is the part of the string having the largest
amplitude of motion, where the two traveling waves always
add their effects. This portion is called a loop or antinode.

The different allowed simple-harmonic motions are all
given by the expression
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The lowest allowed frequency is called the fundamental
frequency. The higher frequencies or overtones are integral
multiples of the fundamental frequencies. Overtones
satisfying this simple relation to the fundamental are called
harmonics. The fundamental frequency is called the first
harmonic, the first overtone is called the second harmonic,
and so on.

Examples and Simulations

Very few vibrating systems have harmonic overtones, but
these are the basis of nearly all-musical instruments. If the
overtones are harmonics, the sound seems particularly
pleasant to the ear.

Figure 1 shows the applet that represents the standing
waves in a string under tension It allows the observation of
the vibration modes by pushing the Start, Pause, Continue,
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Step and Scale buttons. We can control the Frequency and
the Velocity of the wave.

FIGURE. 1
STANDING WAVES IN A STRING UNDER TENSION.

LONGITUDINAL VIBRATIONS OF BARS

Objective

We shall study the longitudinal motion of a bar. We shall
focus on the fundamental resonance frequency f1, the
frequency of successive overtones and their relationship with
f1.

Description

Longitudinal waves in a thin bar travel at the same velocity,
as do longitudinal waves in a string of the same material.
Suppose we have a long, thin bar under no tension. We
assume that the bar is straight, with uniform cross section
and symmetrical about a central plane. The length of the bar
is L, its density is ρ, and its Young’s modulus is E. We
designate a point on the bar by giving its distance x from
some origin while in its equilibrium position. The motions
we shall study involve the axial displacement w of a small
volume element. Longitudinal waves are propagated along
the bar with a velocity cL. The relationship between the
dependence of w on x and its dependence on time t is given
by the second-order equation:
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Different boundary conditions give different solutions
for this equation. When both ends are fixed, or if both are
free, the different allowed simple-harmonic motions are all
given by the expression:
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Longitudinal waves in a thin bar are nondispersive, i.e.
their speed cL does not depend on frequency. In a thick bar,
the longitudinal wave speed decreases slightly at high
frequency due to the effect of lateral inertia.

Examples and Simulations

Rods in which the longitudinal waves are excited by
striking the ends are used as standards of high frequency
sounds, bigger than 5000 Hz, where a tuning fork is not very
satisfactory.

Figure 2 corresponds to the applet that represents the
propagation of a longitudinal wave along an elastic bar.
Likewise, it shows the characteristics of the harmonic wave
motion. In the origin there is a source that describes a simple
harmonic motion. The applet allows the observation of the
characteristics of the harmonic motion by pushing the Start,
Pause, Continue and Step buttons. We can control the
Wavelength and the Velocity of the wave.

FIGURE. 2
LONGITUDINAL VIBRATIONS OF BARS.

TORSION VIBRATIONS OF BARS

Objective

We shall study the torsion motion of a thin bar. We shall
focus on the fundamental resonance frequency f1, the
frequency of successive overtones and their relationship with
f1.

Description

Suppose we have a long, thin bar under no tension. We
assume that the bar is straight, with uniform cross section
and symmetrical about a central plane. The length of the bar
is L, its density is ρ, and its shear modulus is G. We
designate a point on the bar by giving its distance x from
some origin while in its equilibrium position. The motions
we shall study involve the angle of twist θ of a small volume
element. Torsion waves are propagated along the bar with a
velocity cT. The resulting wave equation is very similar to
the obtained for longitudinal waves. The relationship
between the dependence of θ on x and its dependence on
time t is given by the second-order equation:
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Different boundary conditions give different solutions
for this equation. When both ends are fixed, or if both are
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free, the different allowed simple-harmonic motions are all
given by the expression:
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Torsion waves in a bar are nondispersive. If the bar is
not thin, the torsion wave speed depends on the section of
the bar: cT in a bar of rectangular cross section is less than
that of one of circular section.

Examples and Simulations

Bowing a violin string excites torsion waves as well as
transverse waves. Torsion waves affect the mechanism of
the bow/string interaction.

For the moment we have not designed any simulation of
torsion vibrations in bars.

BENDING VIBRATIONS OF BARS

Objective

We shall consider transverse motion of the bar due to the
bending moment only (the motion of the bar is supposed to
be perpendicular to its central surface). We shall focus on
the different allowed motions, the fundamental resonance
frequency f1, the frequency of successive overtones and their
relationship with f1.

Description

We shall study a long, thin bar or rod under no tension. We
assume that the bar is straight, with uniform cross section
and symmetrical about a central plane. The length of the bar
is L, its density is ρ, its Young’s modulus is E and the radius
of gyration of the cross section is κ.

When the bar is bent, its lower half is compressed and
its upper half stretched (or vice versa). The equation of
motion of the bar is
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This is a fourth-order differential equation. It is not
possible to construct a general solution from transverse
waves traveling along the bar with constant velocity and
unchanged shape. The velocity of transverse waves is, in
fact, quite dependent on frequency; that is, the bar has
dispersion. The general solution is

( ) ( ) ( )
( ) ( ) tie}kxDsinkxcosC       

kxBsinhkxcoshA{t,xy
ω−++

+=
(8)

where we have defined the propagation number ck ω= and
A, B, C, and D are real constants. We need four boundary
conditions (two at each end) to determine them. There are
three different end conditions for a bar: free, supported
(hinged), and clamped. For each of these a pair of boundary

conditions can be written. At a free end, there is no bending
moment and no shearing force, so the second and third
derivatives are zero. At a simply supported end, there is no
displacement and no torque, so y and its second derivative
are zero. At a clamped end, there is no displacement and no
velocity, so y and its first derivative are zero.

If we consider a bar of length L clamped at 0x =  and
free at Lx = , we obtain two equations that fix the
relationship between A and B and between k  and L.
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The solutions of this transcendental equation in order of

increasing value are nnLk βπ = , where 597.01 =β ,

494.12 =β , 500.23 =β , etc. It turns out that nβ is

practically equal to 2
1n −  when n is larger than 2. For the

allowed values of the frequency we have
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The allowed frequencies depend on the inverse square
of the length of the bar and the overtones are not harmonics.
Other end conditions combinations can be obtained in a
similar way.

Examples and Simulations

A tuning fork can be considered to be two vibrating bars,
both clamped at their lower ends. If the bars are struck, the
initial metallic “ping” rapidly dyes out, leaving and almost
pure tone due to the fundamental.

Figure 3 and Figure 4 correspond to the applet that
shows the first five characteristic functions for a vibrating
bar clamped at one end and free at the other.

FIGURE. 3
FIRST CHARACTERISCTIC FUNCTION FOR A BAR CLAMPED AT

ONE END AND FREE AT THE OTHER.
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FIGURE. 4
FIFTH CHARACTERISCTIC FUNCTION FOR A BAR CLAMPED AT

ONE END AND FREE AT THE OTHER.

Figure 3 shows the first characteristic function and
Figure 4 shows the fifth. We interact by pushing the New,
Next and Previous buttons. As it can be seen for the higher
overtones most of the length of the bar has the sinusoidal
shape of the corresponding normal mode of the string, with
the nodes displaced toward the free end.

MEMBRANES

Objective

We shall study waves on membranes. We shall focus on a
resonance frequency f. Also we shall study the standing
wave patterns (Chladni patterns).

Description

We shall study a perfectly flexible membrane. We assume
that the membrane is pulled evenly around its edge with a
tension T. The superficial density of the membrane is σ. The
displacement of the membrane from its equilibrium position
is η.  The wave equation should be written as:
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For a circular membrane and harmonic solutions, using
polar coordinates, we find that the possible solutions for
simple-harmonic oscillations are

( ) ( ) ti
m emcoskrAJt,,r ωφφη = (12)

where ( )krJm  are the ordinary Bessel functions. Each

Bessel function goes to zero for several values of kr. The n-
th zero of ( )krJm  gives the frequency of the (m,n) mode,
which has m nodal diameters and n nodal circles (including
one at the boundary).

Examples and Simulations

Membranes are present in some percussion musical
instruments, as kettledrums, bass drums, snare drums,
tambourines and some others. The condenser microphone
corresponds approximately to the case of a circular
membrane. The diaphragm of the microphone is metallic,
and therefore it has stiffness; but it is often so thin and under
such great tension that the effects of stiffness can be
neglected.

At present, we are designing the simulation for the
vibration of a circular membrane pulled evenly around its
edge.

BENDING VIBRATIONS IN THIN PLATES

Objective

We shall study bending waves on thin plates. We shall focus
on a resonance frequency f. Also we shall study the standing
wave patterns (Chladni patterns).

Description

A plate may be likened to a two dimensional bar or a
membrane with stiffness. Like a bar, it can transmit
longitudinal waves, shear waves, torsion waves or bending
waves, and it can have three different boundary conditions:
free, simply supported or clamped. The radiation of sound
for the bending waves is more important than in the other
cases.

We shall study a thin plate under no tension. The
thickness of the plate is h, its density is ρ, its Young’s
modulus is E and its Poisson ratio is ν.

The bending of a plate compresses the material on the
inside of the bend and stretches it on the outside. But when a
material is compressed it tries to spread out in a direction
perpendicular to the compressive force. The displacement of
the plate from its equilibrium position is z. The equation of
motion is:
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For a circular plate and harmonic solutions, using polar
coordinates, we find that the possible solutions for simple-
harmonic oscillations are

( ) ( ) ( )[ ] ti
mm emcoskrBIkrAJ t,,rz ωφφ += (14)

where  Dk 24 ω= , ( )krJm  are the ordinary Bessel

functions and ( )krIm  the hyperbolic Bessel functions.
Bending waves in a circular plate are dispersive; that is,

their velocity kc ω=  depends upon the frequency. The

frequency of a bending wave is proportional to 2k :
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The allowed values of k  that correspond to the normal
modes of vibration depend on the boundary conditions. They
are labeled mnk , where m gives the number of nodal
diameters and n the number of nodal circles in the
corresponding normal mode.

Examples and Simulations

The diaphragms of ordinary telephone transmitters and
receivers are examples of plates.

For the moment, we have not designed any simulation
for the vibration of a plate.

APPLETS

We have two possibilities for designing simulations: We can
use specialized programs (Computer Algebra Systems) as
Mathematica and Maple V [8], or we can utilize a general
proposal language.

We have chosen the second possibility, because,
normally, individual users have not CAS programs, and we
want our teaching stuff to be accessible for all people
interested in Acoustics. In order to create applets that
simulate physical phenomena, the elected general proposal
language has been Java. These kind of interactive programs
are automatically executed when their web page is loaded in
a navigator. Besides, they are another element of a web page
that includes the text, the mathematical expressions and the
necessary figures in order to explain the simulated physical
phenomena.

Java language is not usual in the scientific field
programming. In this field, FORTRAN and C/C++
languages predominate. However, this new language has all
the necessary characteristics for programming the different
tasks and its executables work in any computer without any
change. This last characteristic is not possible with C or
FORTRAN [9].

In this paper we present the simulations of the
transversal vibration of a clamped-free bar and that of the
vibration of a circular membrane pulled evenly around its
edge. Both of them have two parts: the calculation of the
frequencies of the different vibration modes and the
graphical representation of the characteristic functions
corresponding to the vibration modes.

In the first part, an abstract base class is created. This
class describes the mid point numerical procedure in order to
calculate the roots of the transcendental equation in an
interval. In the derived class, we define the transcendent
function f(x)=0, whose roots we want calculate [10].

In the second part, a user interface is created, in order to
visualize the characteristic function of the elected mode in
an animated form.

The bar vibration mode applets have been developed
using Java 1.1 version, compatible with the current
navigators. This type of programs will not present any
problem to be adapted to the new version Java 2, when the

usual navigators will include the corresponding Java Virtual
Machine (JVM).

For the circular membrane, at this moment the applet
that calculates the frequencies of the different vibration
modes has been developed [11]. In order to represent the
characteristic functions we will use a 3D graphical library. It
will be no necessary to install additional software in user’s
navigator to watch the applets.

CONCLUSIONS

In order to achieve the best understanding of the vibration
behavior of simple structures we are developing didactic
units that present multiple representations of the same
phenomena, e.g. mathematical, graphical, animated and
textual. The qualitative representations help students to
develop images that give the mathematical symbols
meaning. The multiple representations seem to be
advantageous in improving the students’ opportunity to ask
questions and to construct their own correct answers.
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