
Session

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
1

IMPLEMENTATION OF A METHOD TO ASSESS STUDENT
PROGRESS/PERFORMANCE IN AN INTERACTIVE, INTERNET-BASED,

SELF-LEARNING TOOL

Brian L. F. Daku1 and Heidi A. Diefes-Dux 2

1 Brian Daku, Department of Electrical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5A9, daku@engr.usask.ca
2 Heidi A. Diefes-Dux, Department of Freshman Engineering, Purdue University, 1286 Engineering Administration Building, Room 206 West Lafayette, IN
47907-1286, hdiefes@purdue.edu

Abstract An interactive, multimedia, self-learning tool
has been developed to teach the basic concepts of MATLAB.
This tool, referred to as M-Tutor, is available on a CDROM
for individual student use. It was designed to alleviate the
time limitation of learning to using MATLAB in engineering
courses. But the logistics of delivering, supporting, and
evaluating a CDROM-based tutorial in large lower division
engineering courses can be overwhelming.
The approach taken here was to modify M-Tutor to run in a
Terminal Server environment to permit internet delivery. An
obvious difficulty with an internet-based tool is assessing
student progress and performance. This has been addressed
by keeping track of both the material accessed and the
exercise performance. The instructor can use this
information to monitor student progress and identify
difficulties, or it could be used as part of a for-credit
evaluation procedure.
The paper reviews M-Tutor and its Windows Terminal
Server implementation. Focus is on the implementation of
the method used to assess student progress and
performance.

Index Terms MATLAB, Internet delivered course, Student
Assessment, Computer based instruction.

INTRODUCTION

MATLAB [1] is a very popular software tool that has
become an integral part of many engineering curriculums.
Since MATLAB is a software tool, it lends itself well to
computer-based instruction that can be integrated with
MATLAB problem solving sessions. This approach has been
used in a MATLAB tutorial that combines computer-based
instruction with interactive MATLAB exercises. This
tutorial, called M-Tutor, is CDROM-based and was meant
for individual student use at home [2]. In addition to M-
Tutor, the student requires an installation of MATLAB to
effectively use the tutorial on a computer.

M-Tutor has been used as supplemental material for
lower year engineering courses. But for larger classes the
logistics of delivering, supporting, and evaluating a
CDROM-based tutorial can be overwhelming. Also, since
MATLAB is required, the tutorial is generally used on-
campus and thus for large classes the required hardware

computer resources can be great. One possible solution to
these problems is to deliver the tutorial by way of the
internet to the student's homes.

The traditional internet delivery tool is a web browser
and one approach to achieve internet delivery is to convert
the M-Tutor content to a form that could be directly
accessed by a web browser. The problem with this approach
is that a project such as this requires a significant
commitment of time and resources. For example, the
development effort for the original M-Tutor tutorial was
approximately three man-years. An alternate approach, and
the one that was selected, was to modify M-Tutor to run on a
terminal server. This is an ideal solution because: 1) the
modifications to M-Tutor are relatively minor, 2) the student
does not have to purchase MATLAB, and 3) student
progress with M-Tutor can be easily evaluated by the
instructor since all students will be running M-Tutor from a
single campus location. A prototype terminal server
implementation of M-Tutor was completed in the summer of
2001. This implementation has been tested both at the
University of Saskatchewan and at Purdue University.

The problem of assessing student progress and
performance has been addressed in the M-Tutor terminal
server implementation. For example, the M-Tutor software
keeps a record of all pages accessed in the tutorial, all
hotwords accessed and all page exercises, summary quizzes
and summary exercise quizzes that are completed. The
record of page visits and hotword selections indicate what
material the student has viewed. How well the student
understands the material is indicated by the exercise and
quiz performance. The instructor can use this information to
monitor student progress and be alerted to aspects of the
content with which the student is having difficulty, or it
could be used as part of a for-credit evaluation procedure.

The paper consists of four sections: first an overview is
given of M-Tutor, then the Windows Terminal Server
implementation is described, this is followed by a
description of the implementation of the
progress/performance method, and finally the conclusions
are presented.

OVERVIEW OF M-TUTOR

Session

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
2

This section presents a brief description of the MATLAB
tutorial called M-Tutor. More detailed information is
available on the web site www.m-tutor.usask.ca and in two
previously published papers [3],[4].

M-Tutor was developed for students who have had little
or no exposure to MATLAB. The content is divided into the
following eight sections:

1. Getting Started
2. MATLAB Variables
3. Scalar Math
4. Vector Math
5. Vectors and Basic Plotting
6. Relational and Logical Math
7. Writing Basic MATLAB Programs
8. Matrix Math

Many of these sections are also divided into a number of
subsections that focus on a common topic. A listing of the
detailed Table of Contents can be viewed at the internet site
www.m-tutor.usask.ca.

The tutorial content is delivered on 'computer pages',
each of which, presents the student with a new concept or
with instructions and examples for a set of MATLAB

commands. Learners can select highlighted hotwords to
obtain detailed definitions or additional descriptions.
Hotwords are also used to request actual MATLAB results
for the examples. The majority of the pages have a number
of interactive exercises in which students can explore the
concepts or commands presented on that page. Note that the
amount of information presented on a page has intentionally
been kept small so the student can easily digest the material
and the exercises can focus directly on that material. An
example of one of the computer pages is shown in Figure 1.

The user interface is a comprehensive navigator that has
been developed to help students manage their path through
the M-Tutor tutorial. While the tutorial content is organized
in a traditional manner, students have the freedom to cover
the sections in whichever order suits their needs. The
features of this navigator include:

1. On page buttons to easily navigate through the
tutorial. These buttons can be seen in the top, left-
hand corner of Figure 1. From left to right these
buttons are: Go back one page, Go to the main
menu, Go ahead one page, Access a list of visited
pages, Access the bookmarks list, Jump to the last

FIGURE 1
EXAMPLE PAGE FROM THE MATLAB TUTORIAL

Session

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
3

visited page and Jump to the section contents
page.

2. Information, Options, and Results menu items
that access useful information about the tutorial,
change tutorial options, and present exercise and
quiz evaluation results, respectively. These
menus are located at the top, left-hand corner of
Figure 1.

3. A Help window that describes how to use the
navigator. This help facility is accessible from
the Information menu.

The navigator is also responsible for maintaining the
record of the student's progress through the tutorial. A
database file, keyed to the student's name, keeps an audit
trail of the student’s progress. The database is also used to
color code material within the tutorial so the student can
easily determine which material has been completed.

Easy access to the various pages in the tutorial is
provided by several methods. One of these is the Main
Menu, which consists of a hierarchical set of color-coded
submenus that represent the sections and subsections in
the tutorial. This submenu approach reduces the amount
of information that is presented to the student, which is
beneficial for first time users of the tutorial. The Main
Menu is accessed using the on-page navigation button,
MAIN, shown in Figure 1.

The submenu approach can become tedious once the
user becomes familiar with the organization of the
tutorial, thus an alternate method to access the pages is
also available. This method can be accessed by selecting
the TOC button (Table of Contents) located at the bottom
left-hand corner of Figure 1 or through the Information
menu. Selecting this button displays a window that lists
all of the sections, subsections and pages in the tutorial.
A scroll bar can be used to move up and down the list.
Selecting any of the hotwords in this window will take the
student to the corresponding page in the tutorial. Finally,
specific pages can be accessed directly by page number
with the Go to Page. . . button, located in the lower left-
hand corner of Figure 1.

A unique feature of M-Tutor is the comprehensive set
of reinforcement exercise problems. In the initial Getting
Started section of the tutorial, the student uses the
MATLAB desktop to perform some simple exercises.
This exposes the student to the actual MATLAB interface.
In all of the subsequent sections, the student uses a
specially designed exercise window to perform the
exercises, an example of which is shown in Figure 2.

The exercise problem to be solved is displayed in the
top left-hand corner of the window. The user can select
the Hints button, which progressively displays a list of
hints to aid the student in solving the problem. Students
enter their solutions to the problem (MATLAB language
expressions) in the center subwindow, which is labeled
Enter MATLAB Commands Here. This window has the
full functionality of the MATLAB command window,

including the use of the arrow keys to access to
commands previously executed.. The student enters a
MATLAB command and the result is displayed in the
MATLAB Response subwindow. This response is the
exact response that would be seen if the command were
executed in MATLAB's own command window. This is
done by evaluating the commands using the MATLAB
engine.

The exercise window uses an ActiveX interface to the
MATLAB engine to execute the MATLAB commands
entered by the student. The student selects the Evaluate
button after entering the MATLAB commands and is then
informed of whether the proposed solution is correct or
incorrect. The evaluation method uses the MATLAB
engine to compare the workspace contents and variables
of a correct solution with those of the student's proposed
solution. The student can access an example of a correct
solution from the Hints menu, after using the Evaluate
button.

The main advantage of the exercise window is the
direct interface to MATLAB, which allows the student to
use MATLAB and get instant feedback from within the
tutorial. The exercise window is also used to guide the
student through the problems using hints. The student is
informed if the proposed solution is correct or not and
then the student is given access to the actual solution to
the problem.

Evaluation of students' mastery of the content occurs
at the end of each subsection of the tutorial. This is done
using two forms of quizzes: a Summary Quiz and an
Exercise Quiz. Each Summary Quiz consists of a number
of short questions, the majority of which are multiple
choice. These questions review the information presented
in the subsection.

The Exercise Quiz consists of problems that use the
exercise window. There is one exercise for each page in
the subsection. The exercises in the Quiz do not provide
hints, but they do provide the answer after students have
attempted the solution. The results of the Summary Quiz
and the Exercise Quiz are tabulated and displayed using
the Results menu item. Keeping a record of the quiz
results, which the student can access, provides motivation
for the student to seriously attempt the questions.

 M-TUTOR WINDOWS TERMINAL SERVER
IMPLEMENTATION

Microsoft produces a multi-user operating system
product called the Windows 2000 Advanced Server [5].
This product can be used to deliver the Windows desktop,
plus the latest Windows applications, to virtually any
remote desktop computer including those that cannot run
Windows. There are three components that make up the
Windows terminal server environment. These

Session

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
4

components are the server, the communication link and the client. The server is basically a large computer, with

FIGURE 2
EXERCISE WINDOW FROM THE MATLAB TUTORIAL

.

the appropriate software, that provides virtually all of the
computing resources for the server environment. The
communication link is the connection between the server
and the client. This link uses a Remote Desktop Protocol
that relies on a TCP/IP interface. This protocol efficiently
moves graphical information across a network. The final
component is the client, which is the student's personal
computer connected to the internet through a telephone,
DSL modem or cable modem.

The student can only access a Windows Terminal
Server by first installing the terminal service's client
software on their computer. Client software is available
for a wide variety of personal computer operating
systems, including Microsoft Windows, Apple Macintosh,
and Unix. Once the student installs the client software,
the computer can be used to log onto a server, over the
internet, with a username and password. The student can

then run Windows-based applications on the server
computer. The execution of the application and all data
storage occur on the server computer. Only the keyboard,
mouse and display information are transmitted over the
internet to the students computer. Multiple students can
log onto the server computer, but each student sees only
their individual session and each session is managed
transparently by the server operating system, independent
of other users sessions.

Porting the M-Tutor software to a Windows Terminal
Server computer was relatively straightforward, requiring
only the following modifications to M-Tutor:

1. All writeable files had to be located on a student
accessible hard drive mounted on the server
computer. These files are generally used to
record student progress within the tutorial. These
files are located in a central location on the
server, thus, an added benefit is that they can be

Session

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
5

easily accessed by the instructor for evaluation
purposes.

2. The audio, which is an added feature in the
CDROM version, was disabled to reduce the
bandwidth requirements to accommodate
network connections using low-speed modems.

3. AVI movies were converted to Viewlet [6] based
movies that have much lower bandwidth
requirements. This was also done to
accommodate low-speed modem connections.

The terminal server implementation of M-Tutor was
initially tested by 60 second-year electrical engineering
students at the University of Saskatchewan. This was
done in a four day intensive MATLAB/Simulink camp
given prior to the start of classes in September, 2001.
This was an on-campus test using University desktop
computers to connect to the server. No major problems
were identified in these tests. A second test involving 300
freshman engineers was done in January 2002 at Purdue
University. Here M-Tutor is part of a WebCT delivery
that can be accessed remotely from the campus. The
installation and testing of the tutorial was very successful.

PROGRESS/PERFORMANCE ASSESSMENT
METHOD

In an academic environment it is important to assess
student progress and performance for evaluation purposes.
This can be difficult with a self-learning tool such as M-
Tutor. The task of assessment can be significantly aided
if suitable usage information is collected. The usage
information is also worthwhile in terms of the broader
goal of assessing the effectiveness of tutorial-based
learning environments.

Collecting usage information for M-Tutor was
relatively straightforward to implement, since the
CDROM version of the tutorial was designed to collect
some basic user information in a spreadsheet. The
original implementation was modified for the increased
requirements of the terminal server implementation. This
section describes the type of usage data collected and how
the collection process was implemented.

Usage data is collected for the two major tutorial
components: content and exercises. In both these
categories data is collected on all materials accessed and
the rate at which the materials are used. In addition, data
collected for the exercise component includes how help
information was accessed and the exercise results.

The organization and type of data collected for the
content component is shown in Figure 3. Every time a
page is accessed the page number and name are entered as
a new record in a spreadsheet. While the user is on that
page, all hotwords accessed are entered in the same
spreadsheet record. Timing data is collected for all page
accesses and it is entered on the associated spreadsheet

record. The timing data includes: the date the page was
entered (In Date), the page departure date (Out Date), the
time of page entry (In Time), the page departure time (Out
Time), the elapsed time spent on a page (Elapsed Page
Time), and the elapsed time since the start of the present
M-Tutor session (Elapsed Session Time). The
spreadsheet page records are recorded in chronological
order.

FIGURE 3
CONTENT DATA COLLECTED FOR EACH PAGE ACCESSED

The organization and type of data collected for the
exercise component is shown in Figure 4. Every time an
exercise is accessed the exercise name is entered as a new
record in the spreadsheet. While the user is working on
that exercise, timing data is collected and entered in the
same spreadsheet record. The exercise timing data
includes the date the exercise was started (In Date), the
date it was finished (Out Date), the time the exercise was
started (In Time), the finish time (Out Time), and the
elapsed time spent on the exercise (Elapsed Exercise
Time).

Accesses to the help data used by the student are also
recorded in the spreadsheet. All hints accessed, relative to
when the exercise Evaluate button is pressed (using the
terms Before and After), are recorded. An entry is also
added to the spreadsheet record if the answer is accessed.

Finally, the exercise result is entered in the
spreadsheet record as either correct or incorrect. The
solution generated by the student is evaluated using a self-
checking MATLAB interface [7]. This interface uses
MATLAB to compare the student solution with the
correct solution.

A spreadsheet of the content and exercise data is
generated for each registered student. The M-Tutor
software generates the spreadsheet, and it automatically
uses the student's computer login name as the spreadsheet
file name. The spreadsheet files are stored on the server

Session

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
6

computer and thus can be accessed directly by the
instructor. The instructor can use this information to
monitor student progress and be alerted to aspects of the
content with which the student is having difficulty, or it
could be used as part of a for-credit evaluation procedure.

Obviously, for large classes, the logistics of
individually reviewing each of the progress/performance
spreadsheets can be overwhelming. This problem has
been addressed by compiling the individual student
spreadsheets into a single Microsoft Access database.
This is implemented by running a custom software script
to perform the compilation. The Access database can be
used to locate individual student usage information and it
is also a powerful tool for collecting statistics on class
progress and performance in using M-Tutor to learn
MATLAB. This data can also be used in conjunction with
other class data such as homework and exam grades as
well as student background data.

FIGURE 4
EXERCISE DATA COLLECTED FOR EACH EXERCISE ATTEMPED

CONCLUSIONS

The internet has become a very useful medium for
delivering course material to students. Internet delivery
can be difficult to use for existing standalone software
applications such as interactive tutorials that are meant to
be installed on the student's computers. One approach to
delivering these types of applications, from a centralized
location, is to use a terminal server. The advantages of
delivering application software from a centralized
location include:

1. All students have access to the same version of
the software.

2. There are no problems with software installation
on student computers.

3. It is possible for the instructor to monitor student
progress within the application software, since
the software is accessed from a centralized
location.

This paper describes the use of a terminal server
environment for a standalone application called M-Tutor -
An Introduction to MATLAB, which is an interactive
computer-based tutorial for learning MATLAB. An
overview of the M-Tutor tutorial is presented. This is
followed by a section that describes the implementation of
M-Tutor on a windows terminal server. The last section
identified perhaps one of the most unique and useful
features of the terminal server version of M-Tutor, the
centralized monitoring and performance evaluation
facilities. The progress/performance information
collected using these facilities can be used to monitor
student progress and identify difficulties, or it could be
used as part of a for-credit evaluation procedure.

The terminal server version of M-Tutor has been
successfully tested on terminal server installations at the
University of Saskatchewan and at Purdue University. In
the fall 2002 term, this implementation will be the
students primary means of learning MATLAB in
Freshman Engineering at Purdue.

ACKNOWLEDGEMENT

This work could not have proceeded without the
assistance of computer services staff at both the
University of Saskatchewan and Purdue University. At
the University of Saskatchewan, individual thanks go to
Lorene Turner and Trevor Zintel for their invaluable
terminal server support and to Jonathan Moore for writing
the software to compile the Access database. At Purdue
University, thanks go to Ed Evans and Brad Myers for
their invaluable support in integrating the terminal server
version of M-Tutor into the Purdue computer system.

REFERENCES

[1] MATLAB Web Site, www.mathworks.com .

[2] Brian Daku, M-Tutor, An Introduction to MATLAB, 2nd Edition,
John Wiley & Sons, New York, 2003.

[3] B.L.F. Daku and K.D. Jeffrey, Development of an Interactive
CDROM-Based Tutorial for Teaching MATLAB. IEEE
Transactions on Education 44(2) (2001).

[4] B.L.F. Daku and K.D. Jeffrey. An Interactive Computer-Based
Tutorial for MATLAB. In Frontiers in Education 2000, pp. F2D-2
to F2D-7 (2000).

[5] Microsoft Windows 2000 Web Site,
www.microsoft.com/windows2000

[6] Qarbon Viewlet Web Site, www.qarbon.com

[7] B.L.F. Daku, A Self-Checking Interface for MATLAB-Based
Interactive Exercises, International Journal of Engineering
Education 17(6) (2001).

