
Session

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
1

EASIM – A SIMULATOR FOR THE 68HC11 BASED HANDYBOARD

David Edwards1

1 David Edwards, Griffith University, School of Engineering, PMB 50, Gold Coast Mail Centre, 9726 Queensland, Australia d.edwards@mailbox.gu.edu.au

Abstract Microprocessor development systems are used in
the teaching of computer engineering but have relatively
high capital costs and complex modes of operation which
tends to limit their use in introductory level classes. A
software simulator, EaSim, is described that illustrates both
the Motorola 68HC11 microprocessor and the MIT
developed HandyBoard development system. Simulation
giving each student ready access to their own development
system. EaSim features enhance the learning process,
allowing the undertaking of more complex, and real world
related, exercises. These include: the viewing of register
and memory contents after each operation, single stepping
through a program, executing instructions considerably
more slowly than with a real hardware system, integrated
debugging and trace facilities, and an integrated editor-
assembler. EaSim also simulates the operation of external
hardware devices, such as the Bilby ‘maze mouse’, when
connected to the HandyBoard. Evaluation of the present
package has been undertaken with students responding
favorably to the use of the simulator.

Index Terms Computer engineering, HandyBoard,
Simulation.

INTRODUCTION

Computer engineering is introduced in the first semester of
the Bachelor of Information Technology (BIT) and the
Bachelor of Engineering in Electronic Engineering (BEng)
degrees at Griffith University through a course entitled
‘Microprocessors’. This course has an enrolment of 185.
Within the course students are introduced to the concepts of
a microcomputer and a microprocessor development system.

The course forms a foundation for further computer
engineering studies for the BEng students. For the BIT
students the use of simple development system monitor
routines introduces the functional requirements of operating
systems; the use of a simple assembler introduces concepts
of compilers used in later courses. The constraints
associated with assembly language programming introduces
students to the need to carefully plan and document
programming tasks.

The laboratory component of the course is based on the
Motorola MC68HC11 8-bit microcontroller in the
HandyBoard Development System. The HandyBoard [1]
was designed by Massachusetts Institute of Technology
(MIT) for controlling small robots. The HandyBoard now
has its own website for support [2].

FIGURE. 1
HANDYBOARD DEVELOPMENT SYSTEM.

The board includes analog inputs, digital I/O including
motor drivers, a 32 character LCD screen, 32kB of user
RAM, and a serial link. Although the HandyBoard comes
with an inbuilt C language interpreter, this is not used with
this course. A colleague, Charles Hacker, has written a
work-alike version of the Buffalo [3] monitor program
supplied with Motorola 68HC11 development boards [4].

EaSim (Editor/assembler and Simulator) is an integrated
assembly language editor/assembler and simulator for the
MC68HC11 microcontroller running in the HandyBoard
environment. Most of the features of the HandyBoard are
also simulated.

WHY SIMULATE

The assessment for the course includes the requirement for
the students to develop, implement and demonstrate
programs that interact with a hardware device - a small robot

To give students in the course adequate development
time on a hardware based system would require an
expensive outlay for development systems and laboratories
to house them. Using a simulator allows tutorial/laboratory
classes to be taken in a computer laboratory. Students can
access the simulator program from any of the campus
computer labs or Learning Centres. In addition, students
enrolled in the Microprocessors course are permitted to
make a copy of the program for use on their own PC. This
considerably reduces the demand for computer laboratory
access. For the last three weeks of the course students are
given access to hardware development systems to test the
operation of their assigned tasks under the hardware timing
restrictions.

Session

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
2

A simple hardware microprocessor development system
like the HandyBoard is a relatively unfriendly environment
for software development. The lack of any feedback as the
program is running makes debugging extremely difficult for
novices. A simulator program can provide enhanced
feedback opportunities.

A decision was taken to implement a computer
simulation, called EaSim, of the development system that
would enhance the software system development process as
well as lead to a better understanding of the operation of a
microcomputer. At the time there was no suitable simulator
available. Today there are many microprocessor simulators
available [5], mainly for the Intel family of microprocessors.

The special feature of EaSim, differentiating it from
many other simulators, is that it simulates the operation of
the microprocessor in a real hardware environment. The
commercial simulator for the 68HC11 from vmdesign also
does this to a lesser extent [6].

STUDENT ASSESSMENT

The assessment for the Microprocessors course includes
assignments involving assembly language programming.
The main assignment involves designing and implementing
a program to run on the actual HandyBoard to control the
movement of a small stepper motor driven robot using infra
red sensors to follow a painted track.

Two earlier assignments are wholly simulator based
involving sub-tasks of this assignment. The first is a
68HC11 programming task. The second involves
programming the 68HC11 in the simulated HandyBoard
environment. As students are given all three assignments
tasks at the beginning of the course, they can see the
relevance of the simplified early tasks.

THE SIMULATED HARDWARE

The MC68HC11 is an industry standard 8-bit
microcontroller running at a 2MHz clock speed. It has two
8-bit data accumulators (which can be treated as a combined
16 bit register), an 8-bit status register, and four 16-bit
address registers: program counter, stack pointer and index
registers. Incorporated are serial communications, digital
I/O and analog input ports.

The HandyBoard environment provides a number of I/O
capabilities. These include a serial link to a terminal, a two
line 32 character LCD screen, two push buttons and 6 digital
input lines, 8 digital output lines linked to 8 LEDs in parallel
with DC motor drivers, a buzzer, and a rotary knob input.

 The HandyBoard provides 32kB of RAM at the top of
the memory map. This is divided in our application into
1kB of user RAM (for program development) the remainder
being used for the Monitor program. The limited amount of
user RAM for data, program and stack is seen as an
advantage for an introductory course. It forces students to

be concise in their code, making them very aware of the
need to structure data, code and stack space. This in turn
encourages the student to undertake very careful design and
desk checking before coding.

Also simulated is the small mouse-like robot, called a
Bilby [7], used in the final assignment. Students can check
their program operation in this simulated environment before
transferring to the real hardware.

SIMULATOR HISTORY

The simulator is a Windows based program, the
development of which has been a semi-continuous process
over the last 16-17 years. The original version was written
as DASM, an editor/assembler for the MC6802, and
SIMUL-02, the D3 simulator program, while the author was
with the University of Southern Queensland. These
programs were written in Turbo Pascal Version 2 to run in a
CP/M-86 environment. They were later modified to run
under DOS on IBM PCs. In later years a screen editor was
added and the two programs combined into the one package.

For 1997 the simulator was completely rewritten in
Delphi as EaSim, a Windows package. For 1999 the D3
development boards were replaced with the 68HC11 based
HandyBoards. EaSim was updated to simulate the new
processor and hardware environment. Each year EaSim is
updated to simulate the particular ‘add-on’ hardware being
used for the major assignment.

EASIM FEATURES

EaSim consists of an integrated Editor/Assembler as well as
the Simulator for the operation of a 68HC11 microcontroller
operating in the HandyBoard hardware environment with
external hardware devices connected. The simulator has
been designed to enhance the learning process. Right from
the earliest trial, it was decided to make visible information
such as memory and register contents that is not normally
readily viewable in a development system to help students
understand the operation of a microcomputer.

The decision was taken to display all data in
hexadecimal as this is the format used by the HandyBoard
system for keyboard entry through a terminal.

Editor/Assembler

EaSim contains an integrated editor and assembler for the
68HC11. This integrated editor and assembler allows
programs for the HandyBoard to be developed as assembly
language programs. These programs can either be tested in
the simulated environment or an S19 object code file is
produced for downloading to the ‘real’ hardware for testing.

Features of the Editor/Assembler section of EaSim
include:

• Warning messages being produced if reference is made

Session

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
3

to addresses outside the User section of the HandyBoard
memory map. These warnings can be disabled.

• Extensive context sensitive on-screen help. The
availability of such help is a feature of the whole of
EaSim. The on-screen help with the editor includes help
on the 68HC11 instruction set.

• The instruction set of the 68HC111 can be called up at
any time.

• There is on-line help for using the Editor/Assembler.
• If the assembler reports an error, the on-screen help

suggests the most likely cause of that error.
• All files including object code files and handled as plain

.txt files. This means other, more sophisticated editors
can be used for source code writing. Students may
import these files into word processors for enhancing for
assignment documentation.

FIGURE. 2
ASSEMBLER INSTRUCTION HELP SCREEN.

FIGURE. 3
MAIN EASIM SIMULATOR SCREEN.

FIGURE. 4
PROGRAM TRACE SCREEN.

Session

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
4

FIGURE. 5
ON-SCREEN HELP FOR ERROR.

Simulation of the 68HC11

EaSim simulates the following for the 68HC11:
• All the instruction set of the 68HC11
• The operation of hardware interrupts
• Allows object code to be loaded into user RAM and

programs executed
• Shows the contents of some of the internal control

registers
• Shows contents of the processor’s register contents as

programs are executed

FIGURE. 6
CONTENTS OF INTERNAL REGISTERS.

In addition to the above 68HC11 features, there a
number of enhancements to the EaSim display:

• Context sensitive on-screen help is available.
• Each instruction is disassembled as it is executed
• Programs can be executed a single instruction at a time
• A ‘Debug’ option links the microprocessor instruction

execution back to the assembly language source. As
each instruction is executed the instruction is
‘highlighted' in the on-screen assembler listing.

• A ‘Trace’ facility allows the viewing of the most recent
(up to 100) instructions executed. This trace can be
printed out. Figure 4 shows an example of a program
trace report.

• The execution speed of a machine language program
can be varied. The program can be set to execute until
conclusion, or a breakpoint, at a speed adjustable
between 0.5 and 20 instructions per second. This speed
is determined by the Windows ‘clock’, so the speed is PC
speed independent. A further option allows the program
to run as fast as the PC permits.

• Allows the user the option of choosing any instruction
from the instruction set, setting the arguments for that
instruction and executing it with the current
microprocessor register contents.

• The status register is decoded into the individual status
flags.

• Register contents that are set (or cleared) by the last
instruction are shown highlighted.

• The contents of any of the registers can be changed at
any time.

Simulation of the HandyBoard

Features of the HandyBoard that are simulated:
• 1kB of user RAM.
• The operating system (monitor program) buffers in

system RAM.
• A number of the monitor I/O subroutines including the

reading of a keyboard key and the writing to the LCD
screen. These can be called from a user program.

• The screen and keyboard of the terminal connected to the
HandyBoard. Interaction with the HandyBoard is via a
terminal connected to the serial port. The keyboard of
the PC EaSim is running on acts as the terminal
keyboard. A window acts as the terminal screen.
An option, useful in the lecture environment, allows all
keyboard keystrokes to be shown on screen.

• The two lines of 16 characters LCD screen.
• The 4 pairs of red and green LEDs in parallel with the

DC motor drives.
• The 8 digital input lines.
• The two input push buttons (connected to the digital

inputs).
• The analogue inputs.
• A rotary knob (connected via the analog inputs)

A number of enhancements intended to increase the
‘user friendliness’ of the development environment have
been made to the EaSim display of the HandyBoard. These
enhancements include:
• In addition there is on-screen help for Using the Simulator,

Monitor program commands, and on the accessible
Monitor program routines.

• In addition to showing the contents of each memory

Session

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
5

location in RAM are always on screen. Contents set by the
user are shown in bold, contents not set by the user are
shown in feint. (All memory contents are randomized at
start up).

• Any data changed by the execution of the last instruction
by the microprocessor are shown highlighted.

• The current location of the program counter is shown
against the memory location as '>'.

• The current location of the stack pointer is shown against
the memory location as '<'.

• An option allows the display of the contents of the system
RAM ‘buffers’ used by the I/O monitor routines, these
include the keyboard input buffer, the LCD screen display
buffer, and the interrupt vectors. Only those system RAM
locations students should be accessing are displayed. The
‘hidden’ locations are shown as '..'.

• Contents of a memory location can be changed (by a right
mouse button click on the memory display screen) while
user programs are executing. This allows user programs to
interact with changing data.

Simulation of external hardware

In addition to the HandyBoard environment, EaSim also
includes a simulation of a small mouse-like robot, the Bilby.
This is a two wheeled stepper motor driven device with two
IR sensors for locating a track. The simulated Bilby can
either be operated stand alone, so students can get the feel of
its characteristics, or it can be ‘connected’ to the simulated
HandyBoard. In this mode the stepper motors are driven
from the user program and the position of the Bilby, as
‘seen’ by the IR sensors, in relation to its track is feedback
via the digital inputs.

STUDENT FEEDBACK

Informal feedback from students and fellow staff had led to a
number of refinements of the DOS based program.

The introduction in 1997 of the Windows version of the
program was used as the opportunity to undertake a more
formal evaluation. Students were surveyed by questionnaire
at the midpoint and the end of the course. This has been
followed up on an annual basis since.

All evaluations have shown a very positive response to
the use of the simulator program. Students also have the
opportunity to suggest improvements to EaSim. It is
interesting to note that as improvements have been made to
EaSim in response to this feedback, different ‘problems’ will
be thrown up the following year.

The major negative responses have always relatde to the
speed of operation of the simulator. The restriction to 20
instructions per second was felt to be too slow for the major
assignments making programs too slow to execute. An
option was added to the execution speed control to allow the
program to run at a platform limited speed. (On a 1GHz

Pentium 4 the execution speed is approximately 200
instructions per second. This relatively slow speed is
thought to be caused by the extensive changes that are made
to the visual display during the execution of each
instruction.)

A more major problem than the time it takes large
programs to execute is that the simulator runs at an
unrealistically slow speed compared with the real hardware.
As the real hardware runs at around 500,000 instructions per
second, the simulator is operating at only 0.04% of that
speed. This causes problems in the transition from a
simulated environment to the hardware environment.

In previous surveys, students had reported that they
made little use of the extensive Help that was provided in the
package. For 2002 the separate Help files were incorporated
into a built-in context sensitive ‘On-screen’ help feature.

SIMULATOR DETAILS

Originally developed using Borland Delphi 1, recently
EaSim has been ported to Borland Delphi 6. This 32bit
environment removes many of the restrictions on file size
previously in EaSim. EaSim will be updated for 2003 to
take advantage of the removal of these restrictions.

EaSim can be run on any PC under Windows 95 or
later. However, due to the highly visual nature of EaSim,
the program works best on a PC with a Pentium processor.
The program has been developed to run on as wide a range
of PCs as possible. To facilitate this, the main screen size is
set to 640x480. This facilitates running on student laptops.
The executable code size is 1112 kilobytes.

All files created by EaSim, the assembler source file, the
assembler list file, and the object code file are plain text
files. Students can either print these out or import them into
a word processor for ‘polishing’ for assignments. The
simulator screen and the trace file can also be printed out.

As there is quite a lot of detail on the screens, a ‘Lecture
Theatre’ option within the program increase the font size of
the main text based information. This uses larger fonts and
rearranged screen layouts to facilitate viewing from video
projected images.

EaSim is available in three versions which all have the
same features except where noted:

• The student version which has an expiry date at the end
of the semester. The student version defaults to having
the on-screen help always visible.

• A demonstration version which does not allow the saving
of files created in the Editor/Assembler and does not
have context sensitive help. This version of EaSim is
available for downloading from the Griffith University
School of Engineering website
(http://www.gu.edu.au/school/eng/mmt/MMTdownlds.html).

• A limited life version which is fully featured and can use
for suitability evaluation.

Session

International Conference on Engineering Education August 18–21, 2002, Manchester, U.K.
6

FUTURE DEVELOPMENT

Development underway with EaSim includes the removal of
the 400 lines of source code limit imposed by the ‘64kB
block limit’ of the original 16bit development environment.
Minor changes are being made to make the simulated Bilby
behave more exactly like the real hardware.

An interface to the parallel printer port is planned
(limited to running under Windows 98 or earlier) which will
have a transfer box connected to the printer port behave as
the external hardware connection to the HandyBoard. This,
fro example, would allow the hardware Bilby to be directly
driven by EaSim. This addition would also simplify future
HandyBoard hardware extensions development.

A ‘stripped down’ option is planned. This would turn
off many of the debugging features to reduce changes to the
display. Such an option should allow an increase in the
speed at which EaSim can execute a 68HC11 instruction at
the cost of less frequent screen updates.

CONCLUSION

EaSim has proved to be a very effective tool for introducing
students to microprocessor operations and assembly
language programming. Having an integrated editor-
assembler-simulator allows students to move seamlessly
from code development to program testing. Incorporating
the simulation of a development system environment as well
as add-on hardware devices has greatly increased flexibility.
Without such a simulation package, the costs of
development systems and laboratory time would prohibit
allowing students to undertake ‘hands-on’ assignments.

ACKNOWLEDGEMENTS

The author wishes to acknowledge the generous assistance
provided by his colleagues in the development of the EaSim
package. Charles Hacker developed the keyboard entry
routines, the Terminal Emulation package used to link
EaSim to the real HandyBoard and the Buffalo work-alike
that runs as the HandyBoard monitor program.

REFERENCES

[1] http://lcs.www.media.mit.edu/groups/el/projects/handy-board/

[2] http://handyboard.com/

[3] Miller, G.H, Microcomputer Engineering, Prentice Hall, 1993

[4] http://www.gu.edu.au/school/eng/mmt/HBoard.html

[5] http://www.samphire.demon.co.uk/

[6] http://www.vmdesign.com/

[7] http://www.usq.edu.au/users/phythian/BILBY.HTM

