
Lessons Learnt from a Decade of Structured Support for
Novice Programmers

1Meriel Huggard, 2Ciarán Mc Goldrick
Trinity College Dublin, Dublin, Ireland, Meriel.Huggard@tcd.ie 1;

Trinity College Dublin, Dublin, Ireland, Ciaran.McGoldrick@tcd.ie 2

Abstract
While some Engineering students find learning how to program rewarding, others struggle to
develop any appreciation of, or proficiency in, fundamental programming constructs. Indeed,
students typically view programming modules as necessary pre-requisites for progression
beyond the freshman years, rather than as a means to help them develop their critical thinking
and problem solving skills.

Over the past decade the Programming Support Centre in Trinity College has sought to provide
a positive, supportive atmosphere where students can voluntarily seek one-to-one or small
group assistance with challenges they face while learning to program. During that time the
Centre's service offering has evolved to meet changes in students’ needs and to appraise
faculty members of novice programmers perceptions of the challenges they face when
attempting a programming assignment.

We assess the Centre’s impact on student learning and detail how the natural tensions that
exist between students, the Centre staff and faculty members have been mitigated. We discuss
the qualitative and quantitative metrics used to assess the performance of the Centre over the
past decade and suggest ways in which it may evolve in the course of the next ten years.

1. Introduction
Prior to beginning their undergraduate studies many students are already negatively disposed
towards learning to program. This is true, not only of those studying courses with a significant
technology component (such as Engineering), but also of those who intend to major in
Computer Science [1]. It has been suggested that those who find programming difficult simply
have “no aptitude” for learning to program [2], and a wide variety of tests that seek to quantify a
student’s aptitude for programming have been developed over the past three decades [3,4,5].

It is more than fifteen years since Winslow [6] argued that the literature had not informed either
curriculum design or the creation of textbooks. His views were echoed in a more recent survey
of the literature on teaching introductory programming [7] which concluded that active research
in the area “had limited effect on classroom practice”. Winslow’s conclusion that, in order to
create competent computer programmers, the key is “practice, practice, practice – starting with
simple facts and problems and working up to more and more complicated facts, strategies and
problems” [7] was echoed in Stamouli’s 2009 Ph.D. thesis [8] (“Learning Object-Oriented
Programming from the Students’ Perspective”) where she concluded that students with
programming experience perceived programming constructs in a “more complete and advanced
way”. Thus, in order for students to become competent programmers, they need to regularly
engage with practice problems. However when faced with a programming problem many
students don’t know where to begin their solution and consequently become demotivated.

Those teaching novice programmers often have to make the difficult choice of which language
will provide the best instructional metaphor for the student cohort. This choice has grown more
difficult as the number of candidate programming languages has grown rapidly over the past
two decades. The factors influencing this fraught decision include the motivation and skillset of
the faculty member delivering the module, the technical nature of the language, its perceived
commercial relevance and its pedagogical underpinnings [7]. The most popular programming
languages being taught today are C, C++ and Java [9], however there is much debate on their
appropriateness for those learning to program for the first time [10,11]. An inherent tension
arises between industry/faculty requirements and sound pedagogical principles in this choice of
first programming language. As a result there are many students learning programming for the
first time through languages that they, their instructors, the academic community and, indeed,
industry feel are unsuited for the purpose.

Another factor which impacts on student learning is the very large classes that can arise when a
subject is a compulsory part of the curriculum. For example, in Trinity College Dublin there are
three large student cohorts studying programming: two groupings of typically 200 students and
another of approximately 130 students. These groups are learning either Java or C++. Such
large groups make it very difficult for the instructor to accurately gauge each student’s progress
or to target additional support to students who are struggling to keep up with the course content.

Novice programmers’ experience of their learning environment highlights the importance of
practical tutorial and laboratory classes [8]. Faculty members must be well supported by any
teaching assistants or laboratory tutors assigned to their courses. These assistants are often
drawn from a pool of local postgraduate students and might not have the programming skills
necessary to allow them help novice programmers in a meaningful way. It can be very difficult
for the faculty member to train tutorial assistants in the skills required while simultaneously
managing very large class groupings. Moreover the motivation of the assistants themselves
may not be aligned with that of the instructor (or the students) in that they may have undertaken
the role for little reason other than the salary involved

In summary, many students find themselves in large classes taking programming courses they
feel are largely irrelevant to their future careers [13]. This situation is exacerbated when they
learn programming languages that may be inappropriate for novice programmers and when they
receive less than wholly effective support in their tutorial and laboratory classes. In this paper
we explore one targeted initiative that provides support to such students in their efforts to learn
how to program.

2. Supporting Novice Programmers
About fifteen years ago many U.K. universities became very concerned with the decline in their
students familiarity with, and mastery of, basic mathematical skills - particularly on courses with
a strong mathematical component such as Mathematics, Computing and Engineering [14]. One
way in which this concern was addressed was though the provision of Mathematics Support
Centres. These Centres provide additional resources and tuition to students experiencing
difficulties with mathematics. Many Universities use diagnostic tests to help identify freshman
students who are likely to encounter difficulties with mathematics and these students, in
particular, are encouraged to make use of the support services available to them. While all
students taking mathematics courses in an institution can avail of the services available at the
support centre, attendance is not mandatory. The Mathematics Support Centres proved very
successful [14, 15] and the number of centres grew rapidly to the point where almost all
Universities in the UK and Ireland offer some form of structured support to students undertaking
mathematics modules.

The Trinity College Programming Support Centre (PSC) was established a decade ago and was
conceived as an evolution of the mathematics support paradigm for addressing the needs of
novice programmers. Its objective is to “motivate students to improve their programming skills
and enhance their personal academic success” [16]. The Centre was not intended as a

replacement for traditional lectures, laboratory classes and tutorials; rather it aims to
complement these structures by helping students develop into more competent, independent,
self-assured programmers. Students attending the Centre are encouraged to bring their
problems and solution attempts with them and they will not receive support and advice unless
they have made demonstrable efforts to get to grips with the material themselves.

The Centre’s aims [16] are to:
 Ease the transition of students into programming courses
 Motivate students to adopt a positive attitude towards programming and their studies in

general
 Develop the students’ programming and critical thinking skills in a supportive and

practical fashion.

2.1 Infrastructure and Resources

The Programming Support Centre is a dedicated facility (see Figure 1 below) that is structured
in a less formal layout than that of a laboratory or a lecture theatre. It is equipped with a number
of workstations, screens, a printer and a scanner. There is also a small library, seating, a
dedicated study area and a whiteboard. However the key resource the Centre provides is its
staff. Each staff member works with students on a one-to-one basis, or in small groups of two or
three. The staff member schedule is listed on the Centre’s webpage so students who wish to
work with the same tutor on a return visit to the Centre can see when they are available. The
staff members are experienced programmers who are encouraged to keep up-to-date with the
latest pedagogical developments in the teaching of programming. They are also responsible for
collating data on the Centre’s performance and are encouraged to suggest ways in which it
should evolve to meet the changing needs of students.

Figure 1: TCD Programming Support Centre

In its first few years of operation the Centre was open for approximately sixteen hours each
week (during term time) and operated as a drop-in service only. The opening time slots were
chosen based on identified gaps in the students’ timetables (often around lunch time and after
scheduled classes in the afternoon). However it was found that the students often only made
use of the centre when they had programming assignment deadlines - so that in one week a

given timeslot could see two or three student visits to the Centre while at the same time the
following week upwards of sixty students could be found waiting for the Centre to open.

Initially intensive efforts were made to publicise the Centre and its services to students. These
included an introduction to the Centre during freshman orientation days, posters in communal
student areas, clear signposting to the Centre, a dedicated web site detailing the Centre’s
location and opening hours and the services provided, and regular emails to class mailing lists
encouraging students to make use of the “free” service offered to them. Faculty members were
also asked to regularly remind students that the Centre was available to them if they were
finding programming challenging.

Despite these efforts initial surveys at the end of the first year of operation showed that student
awareness of the Centre was disappointingly low (44% of students said they were unaware of
the Centre’s existence). However it was found that the simple process of asking the students to
fill out a voluntary five minute questionnaire on the Centre helped to raise awareness
significantly as there was a notable increase in footfall in the weeks following the survey. This
tactic was adopted in subsequent years and students were surveyed during the fourth week of
term to help increase awareness. It was also found that publicity needed to extend to all years
of the undergraduate degree programs, rather than to first year students only.

2.2 Staff Recruitment and Development

Staff are drawn from the postgraduate community in the University. They are ideally recruited
during their first year of study, so that they remain on the staff for three or four years. Staff
recruitment takes place on an annual basis to ensure continuity from one year to the next. There
are typically ten tutors associated with the centre, as well as a Centre manager who is in charge
of the day-to-day running of the centre. Initially staff training was provided by the manager of a
Mathematics Support Centre in a neighbouring University. However in subsequent years
training was carried out by the Centre manager and by academics associated with the Centre.
This training addresses issues such as what constitutes support, how students should be
encouraged to become more independent learners and how to avoid doing assignment
problems for students.

To avoid a conflict of interest Centre staff are generally not drawn from the pool of teaching
assistants and laboratory tutors of the programming modules undertaken by students. However
this can lead to a tension between the Centre and faculty members as the Centre is often
viewed as poaching the “best” tutors from the programming modules. There can also be an
artificial tension between the module tutors and the Centre staff, with both groups complaining
that the other is “doing the work” for the students.

The Centre’s staff are the key to its success. While they need to be skilled programmers they
also need to be capable of dealing with the problems of novice programmers in a sympathetic
and supportive way. They also need to be skilled in deflecting student queries on how to
complete a given assignment into engagement on the aspects of programming that are causing
the student difficulties. One technique that proves successful is to ask a student to point out the
section in their notes or textbook which is proving challenging. If the student says that they find
it all confusing then the tutor offers to start on page one. This usually leads the student to move
them towards the area in the notes that are causing them most concern. Tutors also divert
students into the discussion of practice problems from textbooks or course notes that help them
understand the concepts needed to complete their assignments. Much of this work is done
without the use of a computer, although sometimes students seek help in setting up the
necessary software on their personal computers to enable them to carry out assignments at
home.

While the majority of the Centre’s queries come from students learning Java, C and C++, these
are not the only programming languages being taught within the University. Hence the Centre

needs to provide support for students encountering difficulties with languages as diverse as
Processing, Eiffel, Perl, Lua and ARM. Thus the Centre staff needs to be drawn from those with
a wide range of programming experience. For languages that are less widely used support may
only be provided on certain days aligned to the availability of staff that are familiar with the
language in question.

3. Lessons Learnt from the First Decade
The first lesson learnt was that you can never have too much publicity – it took quite a few years
for the student awareness of the Centre to rise from an initially low value of 44% to close to 87%.
Visits from Centre staff to individual class groupings seem to be most effective, followed closely
by student surveys where they are asked to answer questions about the Centres services (this
serves a dual purpose as it allows us to gather feedback on the centres performance). The
webpage needs to be updated regularly, otherwise students question the validity of the
information provided.

The Centre needs to work very closely with Faculty members in relation to tutorial assignment
schedules and the number of assignments given. Getting students to engage in a timely fashion
with course materials is best achieved by encouraging academic staff to set regular
assignments or homework. Students are prone to work in a just-in-time fashion and are inclined
to seek help very shortly before an assignment is due. This runs contrary to the Centres mission
to help students develop their programming skills. The Centre is not a service for the completion
of assignments.

Academic staff needed to be reminded that the Centre is a supplement to existing laboratory
and tutorial classes and is not intended to allow them to focus on teaching the “top-half” of the
class with the view that the Centre will help the remaining students who find programming more
challenging. The Centre has also proved useful in helping to make faculty members more
aware of the substantial body of literature available on the teaching and pedagogy of
programming (See, for example, [7] for an excellent overview of this field).

It was found that few assignments are set during the first weeks of any term, so the Centre does
not open until week three of the academic teaching year. The opening hours must be very
carefully chosen as it was found that if students were free before or after their programming
laboratory class then they would often only attend the centre at these times. On one memorable
day almost 80 second year Engineering students arrived at the Centre directly after their
programming class. While the Centre developed strategies for coping with very large influxes of
students (having additional staff members on call during peak hours and dividing the students
into separate groups depending on their needs), it was decided to avoid opening in these
timeslots. It was also found that attendance at the Centre on Fridays was very low and so the
Centre no longer opens on this day of the week.

The Centre encounters students whose programming difficulties are rooted in the transition to
third level study or in other aspects of University life. Clearly such issues are outside both the
remit and skillset of the Centre’s staff. These students are directed to the University’s Tutorial
Service which provides a confidential support service to all undergraduate students. The Centre
has also had to deal with students who treat the facility as a friendly place to go between
lectures and has put strategies in place to encourage these students to become more engaged
with the College community (e.g. by suggesting they join some of the student societies which
have common room areas where students can congregate between lectures).

One successful innovation was the introduction of small group appointments for students who
have already attended the centre – such appointments are seen as a way of encouraging
students to continuously engage with programming challenges outside of coursework deadlines.
Groups requesting an appointment are put in contact with an available tutor and they then
arrange a mutually agreeable time to meet up. Such appointments are limited to at most one
hour and sometimes may be much shorter. Appointments are deliberately scheduled with a

variable lead time of at least one day so that students cannot reliably align an appointment with
a deliverable deadline. As a result of the introduction of the appointment system the centre has
reduced the number of drop in service hours from sixteen to ten.

3.1 Evaluation

The TCD Programming Support Centre was funded under an initiative to improve the retention
and completion rates on courses with a significant I.T. component. The original funding
application argued that offering a service that aims to encourage students to become more
independent, self-directed learners should hopefully lead students to be more successful in
overcoming difficulties they encounter during their studies. However there are no well-
established metrics for measuring student retention and so it is difficult to measure the Centre’s
direct impact on retention [5]. Rather annual evaluation of the Centre’s performance is carried
out with a view to assessing its effectiveness and its impact on student learning.

The Centre complies with the University’s ethical policies on data collection and retention.
Module lecturers are not informed which students from their class have made use of the
Centre’s services. Students are told what data is collected and how it is used and stored. Any
data collected is anonymised. The data recorded includes the number of individual student visits
per week (and whether these were to the drop-in or to appointment sessions), what courses the
student queries were drawn from, what their programing problem was (e.g. with linked lists, with
setting class paths). The number of repeat visits by individual students is also recorded as the
Centre aims to help students become more independent learners. As mention previously
student surveys are also conducted regularly and students who visit the centre are encouraged
to fill in comment cards about the service. All of this data is reviewed annually and used to
assemble a report on the Centre’s performance for the funding body. This reporting process
also provides an opportunity for the Centre staff to comment on its operation and to reflect on
how its services can be improved.

4. Conclusion
The Trinity College Programming Support Centre has grown steadily over the past decade and
continues to strive to engage with students who are finding programming particularly
challenging. The Centre's service set has evolved, not only to meet changes in students’ needs,
but also to engage more fully with Faculty to make them aware of their students perceptions of
the challenges they face when undertaking a programming assignment. The Centre staff have
been active in considering the problems experienced by novice programmers (see for example
[1, 5, 8, 13, 16, 17]) and will remain engaged with the Engineering and Computer Science
Education research communities in order to continue to improve the quality of the service
offered. The Centre is also seeking to broaden its remit by incorporating support in areas
shown to influence student success - for example those identified using the concept of
Computer Experience [13]. The Centre must constantly seek ways of engaging with students.
Social media, synchronous online support and a greater emphasis on autonomous E-
instructional resources all feature in the Centre’s strategy document for the next decade.

Acknowledgements
The TCD Programming Support Centre is funded from the Information Technology Investment
Fund administered by the Higher Education Authority, Ireland.

References
1. Meriel Huggard, “Programming Trauma: Can it be avoided?”, British Computer Society

Grand Challenges in Computing: Education, Newcastle, England, 2004, pp. 50-51.

2. T. Jenkins, “On the Difficulty of Learning to Program”, Proc. 3rd LTSN for Information and
Computer Science Conference, Loughborough, UK, 2002, pp.65-71.

3. L.J. Mazlack, “Identifying potential to acquire programming skill”, Comm. ACM, Vol 23,
1980, pp14-17.

4. P. Byrne and G. Lyons, “The effect of students attributes on success in programming”, Proc.
ACM ITiCSE, 1999, pp. 49-52.

5. Eileen Doyle, Ioanna Stamouli and Meriel Huggard, “Computer anxiety, Self-efficacy,
Computer Experience: An Investigation Throughout a Computer Science Degree”, Proc.
IEEE Frontiers in Education, 2005, pp. S2H-3-S2H-7.

6. L.E. Winslow, “Programming Pedagogy – A Psychological Overview”, SIGCSE Bulletin,
Vol. 28, No. 23, 1996, pp. 17-22.

7. Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams, Jens
Bennedsen, Marie Devlin, and James Paterson, “A survey of literature on the teaching of
introductory programming”. SIGCSE Bull. Vol. 39, No. 4, 2007, pp. 204-223.

8. Ioanna Stamoui, “Learning Object-Oriented Programming from the Students’ Perspective”,
Ph.D. Thesis, University of Dublin, Trinity College, 2009.

9. Tiobe Programming Community Index, http://www.tiobe.com, accessed 14 May 2011.

10. S. Hadjerrouit, “Java as first programming language: a critical evaluation”, ACM SIGCSE
Bulletin, Vol. 30, No. 2, 1998, pp. 43-47.

11. R.P.Mody, “C in education and software engineering”, ACM SIGCSE Bulleting, Vol. 23, No.
3, 1991, pp. 45-46.

12. M. Savage and T. Hawkes, Measuring the Mathematics Problem, The Engineering Council,
London, U.K., 2000.

13. Meriel Huggard and Ciaran Mc Goldrick, Computer Experience - Enhancing Engineering
education, International Conference on Engineering Education, Puerto Rico, 2006, pp. T4C-
21-T4C-25.

14. D. Lawson, A. C. Croft and M. Halpin, “After the diagnostic test – what next? Evaluating and
enhancing the effectiveness of mathematics support centres – part 1”, MSOF Connections,
Vol. 1, No. 3, 2001, pp. 19-23.

15. D. Lawson, A. C. Croft and M. Halpin, “After the diagnostic test – what next? Evaluating and
enhancing the effectiveness of mathematics support centres – part 2”, MSOF Connections,
Vol. 2, No. 1, 2002, pp. 23-26.

16. Ioanna Stamouli, Eileen Doyle and Meriel Huggard, “Establishing Structured Support for
Programming Students”, Proc. IEEE Frontiers in Education, 2004, pp. F2G-5 - F2G-9.

17. Ioanna Stamouli and Meriel Huggard, “Object Oriented Programming and Program
Correctness: The Students’ Perspective”, Proc. ACM ICER, Kent, U.K., 2006, pp.109-118.

