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Abstract 
Engineering student recruiters often need to target student groups to optimize their time and 
resources.  This study uses the logistic regression, decision tree, and random forest statistical 
classification methods to examine typical college application variables and to identify those 
variables that have the most impact upon students electing to study engineering.  The entire 
Texas Tech University Fall 2008 entrance class of 4436 students (693 of whom were engineers) 
was included in this study.  The independent classification variables selected for this study 
included major, gender/ethnicity, family income, entrance examination scores, parent education 
level, high school class rank, high school size, and high school senior college bound size.  The 
most significant discriminator was gender followed by entrance examination mathematics 
scores by all three classification methods.  Family income, parent education level, high school 
class size, and high school college bound size were the last four significant classification 
variables.  The order of the last four variables varied depending upon the classification method.  
Logistic regression indicated parent education level was more significant among the last four 
variables and the remaining three were approximately equivalent.  Similar discrimination 
patterns were also found by decision tree and random forest analysis.  Female students only 
were isolated from the general population and analyzed using the random forest method.  
Entrance examination mathematics scores were found to be the second most significant 
predictor for this subset of students. 
 
 

1.Introduction  

The need to increase the number of students enrolled in and graduating from engineering 
programs by increasing either retention or recruitment or both has been clearly pointed out in a 
number of national studies and reports.  In view of the downturn in engineering freshman 
enrollments starting in 2001, it is clear that this shortage will become even more severe in the 
future.  Improvements in retention and graduation rates will certainly reduce this problem 
somewhat, but the problem cannot be solved without increases in engineering admissions.  We 
definitely need to do a better job of getting students to enroll in engineering while we 
simultaneously improve retention and persistence to graduation to properly address this 
problem. 
 
College entrance data are used for many different purposes such as: demographic studies, 
university resource planning, marketing, predicting retention and graduation rates, success of 
programs like “No Child Left Behind”, correlations between variables, and many other purposes. 



  

Studies of enrolment trends, impact of special programs to encourage STEM studies, 
demographic characteristics, and similar objectives are plentiful.  The investigators were unable 
to find any studies that analyze this data from a classification perspective with a view of 
identifying those factors that lead a student to select one course of study over another at the 
time of admission.  This type of study needs to be performed using statistical classification 
techniques such as discriminate analysis, logistic regression, decision tree statistics, and 
random forests specifically designed to address classification problems.  These techniques are 
designed to determine the impact of the various independent variables on the dependent 
variable (student selection of engineering at the time of admission in this project).  They are 
capable of simultaneously considering many independent variables, flawed data, continuous 
and binary data with reasonable computational effort unlike correlation and other techniques.  
This research was conducted to apply statistical classification techniques to the questions “What 
elements enter into the decision of a student to study engineering and what is the significance 
of these elements?”  
 
 

2. Background 

In this project, the statistical classification methods, logistic regression, decision trees, and 
random forests, were applied to Texas Tech University (TTU) admissions data to study the 
relationship between students' engineering major preference and several cognition and 
demographic variables.  We were unable to find any studies that employed statistical 
classification methods as applied to college admission data for the purpose of predicting college 
major preference.  We did, however, find several papers that applied statistical classification to 
predict engineering student retention and persistence.   
 
Schiller and Muller (2003) used a hierarchical linear model to explore the association between 
the taking of college level mathematics courses, high school graduation requirements and 
assessment policies.  They found that the higher the high school graduation requirements were, 
the more likely the student will take and persist in college mathematics courses. 
 
Ali, et al. (1992) applied discriminate function modeling to students admitted to Beirut University 
College to build a predictive model of academic success as a function of admission data.  The 
most important factor for natural science students was found to be a variable composed of high 
school GPA and the type of high school attended.  They also found gender and entrance 
examination scores to be significant in predicting student success. 
 
Biel, et al. (1999) employed logistic regression analysis to study the impact of commitment, 
academic integration, and social integration on retention.  Their results show that commitment is 
the strongest predictor of retention and that integration is driven in part by commitment. 
 
Wohlgemuth, et al. (2007) applied logistic regression to retention and graduation rates of 
students in a Midwestern, research extensive university and developed models for students in 
seven different colleges/departments, including engineering.  They found that admission 
examination scores are a strong predictor of retention and graduation rates and that financial 
assistance is significant for predicting the retention of first year students.  An interesting finding 
of theirs was that female and first generation students were most likely to be retained the first 
year, but not during latter years. 
 
Mendez, et al. (2008) applied three statistical classification techniques to investigate 
engineering student persistence in a six year longitudinal study.  They found that the random 
forest method of Breiman (2001) and the classification tree method (see, for example, Breiman, 
et al., 1984) can identify important predictors without identifying a model structure as required 
by more traditional techniques, such as logistic regression. 
 



  

In each of these studies, the dependent variable is a binary variable while the independent 
variables were either categorical (such as classification as a freshman, sophomore, etc.) or 
numerical (such as GPA or the score on a standardized exam).  In this study, we used statistical 
classification methodology as applied to college admission data for the purpose of predicting 
engineering major preference.  The admissions dataset for the entire freshman class at TTU in 
the fall of 2008 was obtained.  Data for a total of 4436 students were available. 
 
In this study, the dependent variable is the selection of engineering as a major (with two 
possible outcomes:  they either did or did not select engineering.  The independent variables 
come from the admission data of the students, which includes the following: 

• Major 
• Gender and Ethnicity 
• Family Income 
• Entrance examination scores (ACT or SAT) 
• Mother/Father education level 
• High school class rank 
• High school size 
• High school senior class size 

Three methods were used to analyze the data to study which of the factors listed above are 
significant predictors for choice of engineering as a major:  Logistic regression, decision trees, 
and random forests.  

2.1   Logistic Regression  
 
Suppose that is a dependent variable whose only possible values are 0 and 1, and that the 
probabilities that  takes on the value of 0 or 1 depend on  independent 
variables .  In logistic regression, the following equation is used to model 

 (where  represents expectation): 
 
                                                  (1) 

 
.  

Applying the logit function,  , to  results in: 

.                       (2) 
  

That is, we model the logit of the probability that  takes on the value of 1 as a linear model of 
the independent variables.  Hosmer and Lemeshow (1989) is a standard reference for logistic 
regression, and we refer the reader there for further details on logistic regression.  It is worth 
mentioning, however, that the method of maximum likelihood was used in calculating the 
parameter estimates, the stepwise variable selection method was used to build the model, and 
lastly the goodness-of-fit test proposed by Hosmer and Lemeshow (1980, 1982) was used to 
assess model adequacy.  
 
2.2  Decision trees 
 
What follows is a brief description of decision trees.  Generally speaking, there are two basic 
types of decision trees:  classification trees and regression trees.  Classification trees are used 
when the response variable is categorical (as in our case), and regression trees are used when 
the variable is continuous.  Collectively, they are known as CART or C&RT, which stands for 
Classification and Regression Trees.  The reader is referred to Brieman, et al. (1984) for further 
details regarding decision trees. 



  

 
A decision tree is a set of binary questions (those with a "yes" or "no" answer) that divides the 
whole dataset into smaller groups in which the predicted probability of classification is a 
constant within each group.  This is most often represented as a tree diagram where each node 
represents a question.  The observations that answer "yes" to a question travel to the right 
descendant node and those answering "no" travel to the left descendant.  The basic structure of 
decision trees can be described by the following: 

• Each split depends on the value of only a single variable. 
• If  is a numeric variable, the questions are of the form {is ?} for all  over the 

range of . 
•  is a categorical variable taking values in , then the questions are of 

the form {is ?} as  ranges over all possible subsets of . 
For each node, the tree algorithm searches through the  variables one-by-one, finding the best 
split for each.  It then compares the  best splits and selects the best of the best. 
 
A criterion function is used to define what is meant by "best" which has the basic property that 
each split of a node results in two descendant nodes that are more pure than the parent node.  
Such a criterion function should have the following properties: 

• The function reaches its maximum when all classes are equally mixed together in the 
node, and 

• The function reaches its minimum when the node contains only one class.  
 
There are many different criteria that might be used, but the most commonly used, and the one 
employed here, is the Gini index.  For a given node , the Gini index is given by 

, where  is the proportion of the observations in the node of class 1.  
The Gini index has a maximum of 1/2 when  and a minimum of 0 when  or 1, 
meaning that there is no impurity in the node.  The split that we select at a node is the one 
which reduces the Gini index by the largest amount in the immediate descendant nodes. 
 
When a tree is found, we do not generally want it to be such that every terminal node is 
completely pure.  Significant over fitting occurs, and the tree has poor predictive performance 
(Breiman, et al., 1984).  The way that over fitting is avoided is to grow the tree until each 
terminal node is completely pure, and then prune it upwards according to a certain rule.  The 
rule employed here is known as minimal cost-complexity pruning.  For a tree with  terminal 
nodes, the cost-complexity measure is given by , where  is the 
misclassification rate, and  is a positive real number called the complexity parameter.  If  is 
small, then the cost for having a large number of nodes will be relatively small and the trees 
produced will tend to be larger.  For a specific ,  can be found such that  is a minimum.  
Thus  is a tuning parameter, and its value is selected by the researcher, generally in an 
arbitrary fashion. 
 
2.3  Random Forests 
 
Appropriately named, a random forest has the basic idea that it is composed of many individual 
classification trees.  Each classification tree in the forest is constructed from a data set 
composed of observations that have been sampled, with replacement, from the original data 
set.  Each tree is grown completely until each terminal node is pure.  To classify an observation, 
each tree in the forest is used to give a classification, known as a vote.  Generally speaking, the 
classification with the largest number of votes is the predicted classification. 
 
In practice, building a random forest can be computationally prohibitive if the data set is large 
and/or there are a large number of variables.  To make the random forest feasible in those 



  

cases, measures such as building the tree using a re-sampled data set that is smaller than the 
original (e.g. two-thirds the size) and randomly selecting a subset of  of the  variables for 
each tree ( ) can be employed.  The reader is referred to Breiman (2001) for further details 
on Random Forests. 

 
 
 

3. Data Analysis 
 
Over all observations, 693 students self-declared as engineering majors.  There were 2113 
females in the data, of which 80 self-declared as engineering majors.  Thus, 2324 males were 
represented, of which 613 were declared as engineering majors.  The data set was randomly 
split in such a way that two-thirds of the data were taken to be the training data set, and the 
remaining one-third was the validation data set.  The proportion of engineering students in each 
data set was also maintained to be the same as in the original data set (about 15.6%).  The 
variables studied for each of the classification procedures are detailed in Table 1.  The training 
data set was used to build classification models using each of the techniques described above 
and then each model was applied to the validation data set to diagnose effectiveness.  The 
results of these are given next. 
 

Table 1: Detailed Variable Descriptions 
 

Variable Description/Possible Values 
MAJOR Engineer, Non-Engineer 
GENDER Male, Female 
ETHNICITY White, Asian or Pacific Islander, Black or African-

American, Hispanic or Latino, Indian American or 
Alaska Native, Non-Resident Alien, Other 

FAMILY INCOME < 20,000, 20,000-39,999, 40,000-59,999, 60,000-
79,999, > 79,999 

MOTHER EDUCATION LEVEL Bachelor's/4-Year Degree, Graduate/Professional 
Degree, High School Diploma/GED/Home School, 
No High School, Some College-No 
Degree/Certificate, Some High School-No 
Diploma, Unknown/Unavailable 

FATHER EDUCATION LEVEL Same as MOTHER EDUCATION LEVEL 
HIGH SCORE Continuous variable.  Highest score on ACT or 

SAT standardized exams.  Converted to SAT 
scale if ACT by matching percentiles. 

HIGH SCHOOL CLASS RANK Continuous variable, percentage. 
HIGH SCHOOL CLASS SIZE Continuous variable. 
HIGH SCHOOL PERCENTILE Continuous variable. 
HIGH SCHOOL PERCENT 

COLLEGE   BOUND 
25% or fewer, 26%-50%, 51%-75%, 75%-90%, 
over 90%, Unknown. 

HIGH SCHOOL SENIOR CLASS 
SIZE 

100 or fewer, 101-500, 501-1000, more than 1000 

MAXIMUM MATH PERCENTILE Continuous variable.  Highest score (as a 
percentile) on the math portion of the SAT or 
ACT. 

 
 



  

 
3.1  Data Analysis: Logistic Regression 
 
SAS's PROC LOGISTIC was used to carry out this analysis.  MAJOR was used as the 
dependent variable, and all other variables outlined in Table 1 were used as the independent 
variables to fit the model.  Using stepwise selection with  (the p-value required for a 
variable to enter the model), and  (the p-value required for removal from the model), 
six of the variables were chosen in the logistic regression model.  They are given in SAS output 
form in Table 2.  It is clear that GENDER is the "most important" variable in predicting the 
choice of engineering, followed by MAXIMUM MATH PERCENTILE.  FATHER EDUCATION 
LEVEL and HIGH SCHOOL CLASS SIZE are both significant, but neither to the degree that 
GENDER and MAXIMUM MATH PERCENTILE are.  Note that care must be taken when 
interpreting these variables due to co-linearity (correlation) that exists between the independent 
variables.  For example, MAXIMUM MATH PERCENTILE and HIGH SCORE are highly 
correlated, so only one appears in the model.  The Hosmer and Lemeshow (1980) goodness-of-
fit test reveals no lack-of-fit for logistic regression applied to this data (p-value = 0.9484, see 
Table 3). 

Table 2: Logistic Regression Variable Summary 
 

                                                    Number         Score           
          Step Entered                           DF          In         Chi-Square       Pr > ChiSq 
             1    Gender                       1           1       217.2051          <.0001 
            2    MaxMathP                     1           2        85.8391          <.0001 
             3    FatherEduc                 5           3        21.2476          0.0007 
             4    HSClassS                          1           4         7.5025          0.0062 
             5    HSPercentCollegeB           4           5         7.8374          0.0977 
             6    FamilyIncome                     4           6         5.3917          0.2494 
 

 
Table 3: Logistic Regression Hosmer and Lemeshow Goodness-of-Fit Test 

 
                         Chi-Square    DF     Pr > ChiSq 
                                            2.7621        8         0.9484 

 
When this model is applied to the validation data set, the result is the predicted probability of 
having engineering for each of the observations in the validation data set.  The value 0.1562 
(693 engineering majors / 4437 total students) is used as the cut-point to "predict" a student as 
an engineering major or not.  A predicted probability above this, and they are predicted to be 
more likely to be an engineering major than the general population.  Using this criterion, the 
confusion matrix for logistic regression is given in Table 4.  This is compared to a random 
classifier which simply classifies a student as an engineering major with probability 0.1562 for all 
students.  The expected confusion matrix for the random classifier is given in Table 5. 

 
Table 4: Confusion Matrix for Logistic Regression 

 

 Actual 
Engineering Non-Engineering 

Predicted Engineering 138 305 
Non-Engineering 36 521 

 



  

 
Table 5: Expected Confusion Matrix for Random Classifier 

 
 Actual 

Engineering Non-Engineering 

Predicted Engineering 27.2 129.0 
Non-Engineering 146.8 697.0 

 
 

The false positive rate (classifying a student as being more likely to be an engineering major 
when they are, in fact, not an engineering major) for the logistic regression is thus 0.369 
(305/826), while the false negative rate (classifying a student as being less likely to be an 
engineering major when they are, in fact, an engineering major) is 0.207 (36/174).  The false 
positive rate for the random classifier is 0.156, while the false negative rate is 0.844.  At the cost 
of doubling the false positive rate compared to the random classifier, the logistic regression 
lowers the false negative rate more than four times. 

 
3.2  Data Analysis: Decision Tree 
 
The same training data set used to build the logistic regression was also used to build the 
decision tree.  The resulting tree is given in Figure 1.  Non-terminal nodes list the variable that 
the data is split on, while terminal nodes contain information regarding the students represented 
by that node.  The first is the proportion of students in that node that are engineering majors 
(which would thus be the estimated probability of a student in that node having engineering as 
their major), followed by the total number of students in that node, then the decision as to 
whether they are predicted to be more likely engineering majors or not. 

Figure 1: Decision Tree 
 
 As can be seen, GENDER and measures of aptitude (MAXIMUM MATH PERCENTILE and 
HIGH SCHOOL PERCENTILE) are the most important.  Every student in the top one-third 
percentile would be more likely to select engineering than the 0.1562 for the entire population.   
 This decision tree was applied to the validation data set, which results in the confusion matrix 
given in Table 6.  (Note that the reason that more students are represented in Table 6 than in 
Tables  4 and 5 is because the decision tree is able to use more of the data than logistic 
regression, as any variable containing a missing value will cause that entire data point to be 
excluded.)  The false positive rate for the decision tree is 0.339 and the false negative rate is 
0.242, both comparable to the logistic regression. 
 



  

Table 6: Confusion Matrix for the Decision Tree 
 

 
 
 
 
 

3.3. Data Analysis: Random Forests 
 
Again using the same training data set that was used in the logistic regression and decision tree 
analysis, the R package "randomForest" was used to generate 500 trees.  As described 
previously, predictions are made using the random forest by running a data point through each 
tree in the forest and determining the number of "votes" for each of engineering and non-
engineering.  The percentage of those that are engineering is taken to be the predicted 
probability of selecting engineering.  Using the same cut-point of 0.1562 as before, Table 7 
gives the confusion matrix for the random forest.  The false positive rate is 0.400 and the false 
negative rate is 0.213. 
 

Table 7: Confusion Matrix for the Random Forest 
 

 Actual 
Engineering Non-Engineering 

Predicted 
Engineering 139 330 

Non-Engineering 35 496 
 

Determining variable importance is a non-trivial task when considering random forests.  Each 
tree can split on different variables at different levels.  In order to investigate variable 
importance, a random forest was manually built by constructing 500 decision trees, with 
pruning.  The pruning was done so as to make the task of compiling the information feasible.  In 
every single one of the 500 trees, GENDER was the first split.  Of those that were female, there 
were only 122 of the 500 that had an additional split, and 84 of those were split on the 
MAXIMUM MATH PERCENTILE.  Of those that were male, 490 of the 500 were next split on 
MAXIMUM MATH PERCENTILE.  The remaining 10 were split on HIGH SCORE.  On the third 
level, 414 of the 500 trees again split on MAXIMUM MATH PERCENTILE, while 200 split on 
HIGH SCHOOL CLASS SIZE.  Bear in mind that the total on the third level within the males can 
be greater than 500, as you can have two nodes that are split at this point.   

 
 

4. Discussion 

GENDER is clearly the single most significant factor in determining if a potential student is a 
strong candidate for studying engineering as demonstrated by all three classification analysis.  
In fact there were so few females declaring engineering as their major that tree analysis remove 
them from consideration immediately and did not include them in determining the role of the 
other variables.  Of the 2113 females in the sample, only 3.8% self-declared as engineers.  
Hence it is self-evident that recruiting which targets males has a higher probability of success.  
That is not to say that females should not be targeted, in fact, they should.  But, we should 
expect a lower rate of success recruiting females as males.  In order to increase the female 
populations studying engineering the recruiting effort directed to females will need to be several 
factors greater than that directed towards males.  However, each of the models can be used to 
provide estimates of the probability of that student selecting engineering (if left to their own 

 Actual 
Engineering Non-Engineering 

Predicted 
Engineering 175 423 

Non-
Engineering 

56 824 



  

devices), which provides a recruiter a parameter to compare/rank students.  This applies to sub-
setting the data by groups (e.g. sex or race).  For example, if one female student has a 
predicted probability of selecting engineering equal to 12% while another has a predicted 
probability of 6%, then the recruiter is reasonable in expecting to be more likely to be successful 
in recruiting the first student. 
 
Beyond GENDER, the next most significant variable, according to all three analyses, was 
MAXIMUM MATH PERCENTILE from ACT and SAT tests.  This is also consistent with 
researchers who have studied retention and persistence.  This is certainly logical in that one 
would expect those factors that lead a student to electing engineering would be the same as 
those factors that carry them through to graduation.   
 
HIGH SCHOOL CLASS SIZE, FATHER EDUCATION LEVEL, and FAMILY INCOME are third-
order variables with significantly less impact on a potential student’s decision to study 
engineering.   
 
Thus it is clear that GENDER is the most important, followed by MAXIMUM MATH 
PERCENTILE.  HIGH SCHOOL CLASS SIZE comes in at a distant third.  Note that all three of 
these were highly significant in the logistic regression.  FATHER EDUCATION LEVEL was 
highly significant in the logistic regression, but appears to be of less importance in both the 
decision tree and the random forest. 
 
When making a decision to recruit a given student or class of students, one can either make a 
random choice or adopt and use one or all of the three models reported here.  When making a 
dichotomous classification, the probability of a “false positive” decision for a random decision is 
15.6% according to Table 5 and the probability for a “false negative” decision is 84.4%.  Hence, 
84.4% of the candidates who actually are engineers will be misclassified.  Logistic regression 
lowers the “false negative” rate to 20.7.  This is a significant reduction and considerable savings 
in non-productive effort.  Similarly, the “false negative” rates for decision tree and random forest 
analysis were 24.2 and 21.3, respectively.  All three classification analyses then demonstrate a 
gain in recruiting efficiency.  The price of this gain is missing engineering candidates among 
those believed to be non-engineering candidates as shown in the “false positive” probabilities.  
But more than this, each model provides a recruiter with a method to rank students according to 
their predicted probabilities of selecting engineering as a major.  It is, of course, up to the 
recruiter to decide how this information is to be best used in their department or school, but it is 
certainly available and is potentially a very valuable resource.  Note, however, that logistic 
regression and random forests offer predicted probabilities that are fine, in the sense that they 
are, for all practical intents and purposes, continuous, while the decision tree's predicted 
probabilities would be very coarse (indeed, in the tree found in this research, there are only 9 
possible predicted probabilities). 

 
 

5. Conclusions 
This study has applied three classification analysis, logisitic regression, decision trees, and 
random forests, to the student admission data of a research-intensive, Midwestern, public 
university to explore the question “what factors identify a newly admitted student as an 
engineering major?”  Of the twelve independent variables considered, two were found to be very 
significant, gender and academic success (entrance examination mathematics scores, high 
school percentile, and high school class rank).  Gender is clearly the first discriminator which 
dominates a student’s decision to study engineering.  Academic success is the second 
discriminator.  Interestingly enough, academic success appears to be less of a factor for 
females who have chosen engineering than males.  It is suspected that this is due to some 
other consideration that is not reflected in the dataset selected for this investigation.  Further 
study is recommended.  Four other variables; father's education level, high school size, 



  

percentage of graduation class that were college bound,  and family income; were found to play 
a role in this decision to study engineering.  These variables were much less significant as 
compared to gender and academic performance.  But father’s education level was more 
significant than the other three secondary variables. 
 
It was found that the probability of misclassifying an engineering candidate as a non-engineer 
was lowered by a factor of four when these classification techniques are compared to simple 
random guessing.  The probability of misclassifying a non-engineer as an engineer was found to 
double by using these techniques. 
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