MQP in China: Doing Projects and Beyond

Y. Rong*, G. Tryggvason, R. Vaz
Worcester Polytechnic Institute
100 Institute Road
Worcester, MA 01609

L. Gao, C. Wu, X. Shao
Huazhong University of Science and Technology
1037 Luoyu Road
Wuhan, China 430074

Abstract - With the development of global economy and the rapid shift of manufacturing to China, the demand for engineers with the ability to work in unfamiliar cultural environments is critically important for both Chinese and US companies. In response to a world in which science and engineering are increasingly global in scope, integrating international research experience into engineering education is essential. An exchange program of Senior Projects in Mechanical Engineering has been established between WPI and HUST. US and Chinese students work in mixed teams doing real world projects sponsored by global companies doing business in China. The students work on defining and solving real-world engineering problems in a very important and vastly different cultural environment. They gain knowledge and communication skills through conducting meaningful project, working in teams, and developing leadership skills in a multi-cultural environment.

Index Terms – exchange program, global education, senior project, US-China project center.

BACKGROUND

With the development of global economy and the rapid shift of manufacturing to China, the demand for engineers with the ability to live and work in unfamiliar cultural environments is critically important for both Chinese and US companies [1-3]. One result is leading to considerable redistribution of research, design, and manufacturing. In response to a world in which science and engineering are increasingly global in scope, integrating international research experience into engineering education is essential.

An exchange program of Senior Project Center in Mechanical Engineering (SPC-ME) has been established in a joint effort of Worcester Polytechnic Institute (WPI), MA, USA and Huazhong University of Science and Technology (HUST), Wuhan, China. About 10 senior students from each side go to the other side for a term of 7-8 weeks, working in mixed student teams with co-advisors and industry mentors, for doing their senior projects, usually sponsored by local industry, including US companies doing business in China.

The students work on defining and solving real-world engineering problems in a very important and vastly different cultural environment. They gain knowledge and communication skills with technical colleagues and partners by conducting meaningful projects, working in teams, and developing leadership skills in a multi-cultural environment.

Unlike most US students who study abroad, the students in the center become immersed in the local culture as they tackle important problems for sponsors and experience a different education system and learning style.

RATIONALE

With China emerging as the US’s most important trading partner, preparing engineers in both countries to work with each other is becoming an important priority. The WPI/HUST collaboration, which involves mutual visits at both the undergraduate and graduate level, is designed to give the students the opportunity to gain cross-cultural experience while working on a professional project, as well as to develop an appreciation for the host country. The objective of the establishment of the Senior Project Center in Mechanical Engineering to provide WPI and HUST senior students an opportunity for international engineering research experience.

WPI is well known by its “two towers tradition” of focusing on both theory and practice, its project-based engineering education and the Global Perspective Program. The junior year project, or Interactive Qualifying Project (IQP), focuses on the interface between technology and society, while the senior project, or Major Qualifying Project (MQP), is a research or design effort in the major area of study and is well recognized by the professional community [4]. WPI was one of the first technological universities to appreciate the need for students to be citizens of the world – to understand other cultures, and to be able to succeed no matter where their paths take them. WPI students go abroad not to sit in classrooms or haunt museums but to solve important problems for agencies, organizations and corporations around the world. These experiences have been primary in the junior project level (IQPs), aiming at gaining multi-cultural background through doing a project relating technology to society [5]. In recent years, WPI has succeeded in conducting more technical projects (MQPs) at our global project centers. This effort has been supported by National Science Foundation.
HUST is a major comprehensive university in China with outstanding engineering programs [6]. Recently, HUST has further developed its interdisciplinary programs in ME to broaden its research and education activities closely toward the international technology advances and making contributions to the rapid development of the national economy in cooperation with industry. Under the support of the Ministry of Education, major innovations in two disciplines, “Mechanical Manufacturing and Automation” and “Mechanical Design and Theory”, have been made to provide talented scholars with a challenging academic atmosphere and advanced research facilities.

The WPI-HUST collaboration on the Senior Project Center in ME has been well sponsored by industrial companies who are doing global business in China. Currently there are three western companies sponsoring four projects through their China operations. Other sponsors include local companies, hospitals, and universities.

WHAT WE ARE DOING

The exchange program between WPI-HUST was initiated in 2004 when President Peigen Li and his colleague from HUST visited WPI. After a period of delay due to political events and SARS, the program was first implemented in summer 2005. Four WPI students came to HUST working with five HUST on two projects of robot design, designated by HUST professors. The students worked in mixed teams, making partners and friends, and learning a lot from each other as well as co-advisors from both WPI and HUST. Figure 1 shows the students involved in the two teams and Figure 2 shows one of the two designs made by the teams.

![Figure 1, The WPI-HUST teams in 2005](image1)

![Figure 2, A gas pipe climbing robot](image2)

The program was enhanced in 2006 when eight senior and one BS/MS students from WPI came cross the ocean joining twelve HUST students. This time five projects with real world application background were identified. Among them two projects were sponsored by foreign companies running business in China. Figure 3 shows one project team and Figure 4 shows examples of the project results from the projects.

These two companies enjoyed working with the project teams and requested to continue sponsoring more projects in next year. Together with another company, three western companies sponsored four projects in 2007, which bring up the total number of the projects in 2007 to seven, facilitating fifteen WPI students and twenty two HUST students for their senior projects.

![Figure 3. A project team in 2006](image3)

![Figure 4. Example projects by WPI-HUST team in 2006](image4)

In 2007, the students started project preparation (named PQP at WPI) before the trip. During PQP, the communication among project partners, co-advisors, and sponsor company mentors were established. The students worked on problem definition, background knowledge and information acquisition, as well as making a project plan.

On the other side, four HUST students came to WPI campus in spring 2006 and worked on two senior projects. The projects were sponsored by Saint Gobain Abrasives and New Age Technologies, both located in the Worcester, MA area. This was their first time of doing real world projects for industry directly. They have learned a lot on the problem definition through the communication with people. The very useful results generated from the project were actually used by the companies. The HUST students gained their confidence of working in the real world from the project experience. Figure 5 shows the project teams and Figure 6 shows the project outcomes.
Table 1 shows the details of the projects WPI and HUST students have worked on in the first three years of the program.

<table>
<thead>
<tr>
<th>Time/Location</th>
<th>Projects</th>
<th>Sponsors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005 in China</td>
<td>1. Gas Pipe Climbing Robot Design</td>
<td>HUST</td>
</tr>
<tr>
<td></td>
<td>2. Fast Food Service Robot Design</td>
<td>HUST</td>
</tr>
<tr>
<td>2006 in USA</td>
<td>1. Special Mini-Dynamometer Design</td>
<td>St. Gobain</td>
</tr>
<tr>
<td></td>
<td>2. Lean Manufacturing Implementation</td>
<td>Next Technology</td>
</tr>
<tr>
<td>2007 in China</td>
<td>1. Multifunction Hospital Bed Design</td>
<td>Tongji Hospital</td>
</tr>
<tr>
<td></td>
<td>2. Portable Intravenous (I.V.) Stand Design</td>
<td>Tongji Hospital</td>
</tr>
<tr>
<td></td>
<td>3. Automated Packaging Machine Design</td>
<td>Zhejiang Factory</td>
</tr>
<tr>
<td></td>
<td>4. Assessment of roll forming practice</td>
<td>APCS</td>
</tr>
<tr>
<td></td>
<td>5. Work Scheduling of Production</td>
<td>St. Gobain</td>
</tr>
<tr>
<td>2007 in USA</td>
<td>1. Lean Manufacturing Implementation</td>
<td>Amphenol TCS</td>
</tr>
<tr>
<td></td>
<td>2. Chip Recycling of BZZ grinding Processes</td>
<td>St. Gobain</td>
</tr>
<tr>
<td></td>
<td>3. Signal Characterization of OD grinding</td>
<td>St. Gobain</td>
</tr>
<tr>
<td></td>
<td>4. Evaluation of Industrial Robots Course</td>
<td>WPI</td>
</tr>
<tr>
<td>2007 in China</td>
<td>1. Design Process for Slide Lock Mechanism</td>
<td>APCS</td>
</tr>
<tr>
<td></td>
<td>2. Value Stream Map for Lean Manufacturing</td>
<td>APCS</td>
</tr>
<tr>
<td></td>
<td>Implementation</td>
<td>St. Gobain</td>
</tr>
<tr>
<td></td>
<td>3. Production report system improvement</td>
<td>Amphenol TCS</td>
</tr>
<tr>
<td></td>
<td>4. Lean manufacturing implementation for</td>
<td>HUST</td>
</tr>
<tr>
<td></td>
<td>Connector and Backplane Production</td>
<td>HUST</td>
</tr>
<tr>
<td></td>
<td>5. Humanoid Robot Development</td>
<td>HUST</td>
</tr>
<tr>
<td></td>
<td>6. Welding Fixture with Active Position</td>
<td>HUST</td>
</tr>
<tr>
<td></td>
<td>7. Walking Robot Development</td>
<td>HUST</td>
</tr>
</tbody>
</table>

It was a wonderful and eye-opening experience,” said a senior at WPI. He, along with other mechanical engineering students spent seven weeks during the summer of 2006 at HUST, working on his senior project. The students lived on the HUST campus, working with HUST students on the projects. The projects included the design of a multifunction hospital bed and an automated paper clip packaging machine and were all supported by industrial sponsors.

“What we have learned”

“Particularly, I learned how to represent myself, my idea, the work we have done, the results and conclusion of the project, and more importantly, the person I am.” This was the first time for many of them as undergraduate students doing real world projects.

The students brought different strengths to the teams. It is observed that for many real world situations, the problem and the project goals are usually vague at beginning and the WPI students, with their previous project experience, usually take the lead in developing the initial conceptual design. They ask a lot of ‘what if’ questions. But, the HUST students catch up quickly with their strong analytical and technical skills and become a real asset as the designs became more specific. All team members—both students and faculty—found it challenging to work on teams with students and advisors from different cultural backgrounds. Language is not a big issue since all the Chinese students are selected and fluent in English. It is, however, a rewarding experience.
Both the co-advisors from WPI and HUST feel that both the WPI and the HUST students learned much about how to communicate with the project sponsors, the professors, and their partners to ensure that the project objectives were clear. The team members also gained an appreciation for the benefits of working in a diverse team.

From the reflections of the students and the professors’ observations, it seems clear that the program is providing the students with an exceptional educational experience. All people involved appear to have gained a lot from the program.

The purpose of the WPI-HUST collaboration is to educate engineers who have the skills and attitude to work effectively in an international setting. In addition to sponsoring projects to help develop an internationally experienced workforce, the sponsors found that the student teams provided other benefits to their corporations: “The way the WPI-HUST team works in the company brings in a fresh air by showing that there is a scientific way to analyze the manufacturing process. This is an area that needs to be strengthened in many companies,” according to Al Barry, CEO of APCIS, a US company with manufacturing operations in Wuxi, China. The company sponsored one project during the summer of 2006 and two projects in the summer 2007. In addition to APCIS and Saint Gobain Abrasives, who sponsored one project last summer and will sponsor another one next year, two more US companies have signed up to sponsor projects in the next two years.

BEYOND ACADEMICS

Despite spending most of their time on the projects, the WPI students had the opportunity to experience China and Chinese culture. Bill Durgin, a former mechanical engineering professor and associate provost at WPI who visited HUST while the projects were in progress, noted that “The students received a good dose of local culture even though they were totally absorbed in their project work. I was very pleased to see that the mixed teams had developed a remarkable esprit de corps. Indeed, several of our students visited the home-towns of the some of the Chinese students, post-project.” Or, as Chris Maskwa from WPI put it: “It’s hard to say what was more impressive, whether it was standing in the center of Tiananmen Square, climbing the Great Wall, hiking the slopes of a Taoist mountain, or looking across the lake at the emperor’s Summer Palace, but one thing is for sure, these are things I will remember for the rest of my life.” After graduation, Chris joined a US manufacturing company and expects the work to frequently take him back to China. So far, at least four students took a significant advantage of the China experience which is highly recognized in their job hunting.

Similar stories are heard from the HUST side. Besides many students go to graduate school in either China and abroad, several HUST graduating students, who involved in the program, are working with western invested companies in China.

Besides the project work, the WPI students traveled in China, often with their project partners, to learn more about the Chinese culture and gain more understanding of the people. During the first two years, WPI students have traveled to cities of Beijing, Shanghai, Wuhan, Wuxi, Nanjing, Xi’an, and Luoyang, as well as Tai Mountain, Song Mountain, Hua Mountain, Three Gorges, and Great Wall. They also visited Tsinghua University and HUST campuses. The students gained a better understanding of China from these visits, particularly in comparison of the differences at coast and in land areas. The students have learned and practiced the respect of different culture, the understanding of different ways of thinking, and effective communication skills. They also enjoyed the warm friendship and rich culture of China. Figures 9 shows some pictures the WPI students took in China.

Figure 9. Pictures of touring in China

(a) At Yellow Crane Tower in Wuhan

(b) A taste of Chinese food down the street

(c) Birthday celebration

(d) A big team at Three Georges
ASSESSMENT OF THE PROGRAM EFFECTIVENESS

The students from both WPI and HUST have gained a lot -- not only the knowledge and experience of doing project in China, but also how to communicate and work with people to contribute to business and industry. For example, students learn to solve open-ended, integrative problems, they make connections between classroom and experiential learning, and they come to appreciate the impact of the decisions on local cultures and communities, as well as the impact of culture and community on their decisions. The global project work is an eye-opening, confidence-building--and life-changing experience.

There are many stories on the success of the exchange program. However, in order to qualitatively evaluate the educational effectiveness and the impact on industry innovation, a comprehensive assessment needs to be conducted. Basically the following questions are to be studied and answered.

- How to measure the success of the center/projects
- How to measure student ability enhancement
- How to measure project quality
- How to target on students batch / market need
- How to measure the impact on education
- What assessment procedure to take.

This is one of the areas we will focus on in the next one or two years.

CONCLUDING REMARKS

As author Thomas Friedman says, the world is now becoming flat. Every student must develop the attitudes and skills necessary to deal with real world problems with global background. Young engineers need to be ready to solve unfamiliar problems in an unfamiliar setting, and must accept that they will be working with a large number of people who come from a different cultural background from theirs. Preparing young engineers to work in a flat world is no longer something that engineering schools can treat as an extracurricular activity, available only to those that have the time and resources to spend an extra semester abroad. Every student needs to develop such attitudes and the skills necessary to function globally, right from the time they first enter the workforce. The WPI Global Perspective Program and the HUST International Study Programs provide and facilitate such an education.

ACKNOWLEDGMENT

The authors would like to acknowledge the funding from NSF, the strong support and encouragement from school administrations at both WPI and HUST, and the student project opportunities provided by the sponsoring companies. We also would like to thank faculty members, staff, and students involved in the program for their support and collaboration.

REFERENCES