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Abstract - In conjunction with Creative Pultrusions, Inc., 
a fiberglass reinforced polymer composites manufactur-
er in Alum Bank, PA, a senior project was designed to 
convert the machine operation code for their pultruders 
from the Rockwell Automation’s RSLogix500 software 
to the RSLogix5000 software.  This project was a cap-
stone design for the Electro-Mechanical Engineering 
Technology program at Penn State Altoona.  The 
specific aim was to show the benefits of RSLogix5000 
while improving the pultruding system at Creative 
Pultrusions, Inc. By streamlining the existing code, 
troubleshooting could become more efficient.  In order 
to convert the code, a complete understanding of the 
pultrusion process was necessary along with that of both 
the RSLogix500 software and RSLogix5000 software.  
This document will discuss background information 
pertaining to Creative Pultrusions, Inc., RSLogix500 
software and RSLogix5000 software in addition to the 
machine code conversion and testing processes. 
 
Keyword:  quality control, latter algorithms, programmable 
logic controllers, process equipment. 

 
INTRODUCTION 

 
In the vast world of automated manufacturing, 
programmable logic controllers (PLCs) are one of the most 
reliable and effective means of controlling any electro-
mechanical process. Creative Pultrusions, Inc. is a company, 
which implements the use of PLCs throughout their 
manufacturing process. Creative Pultrusions, Inc., a high 
strength pultruded fiberglass reinforced polymer composites 
manufacturer, was the foundation of the project research. 
The project was to convert the existing program, which is in 
RSLogix500, to the latest Rockwell PLC software, the 
RSLogix5000. 
 
1 Pultrusion Process 
 
Pultrusion is one of the many processes of producing 
fiberglass reinforced polymer composites. The pultrusion 
process starts by feeding fiberglass, woven fabrics, 
continuous strand mat, or carbon material through a series of 
creels [1]. This aligns and guides the material for entry into 
the die. As the material enters the die, it is impregnated with 
resin. Polyester, vinyl ester, and epoxies are typical resins 
that are used [1]. Excess resin is recycled back through the 
process. Once in the die, the heating process begins. The die 
has multiple heat zones to cure the material. Depending on 
the product, the set point for these zones will vary. The 
material is cured by an exothermic chemical reaction. There 
are catalysts in the resin that react once a certain 

temperature is reached. Heat will continue to be released by 
this process and allow the internal temperature of the 
product to exceed that of the die walls. After curing, the 
product is extracted from the die. The material is pulled 
through the pultruding machine by two hydraulic clamps. 
An encoder is used to monitor the length of material 
pultruded. When a desired length has been pulled through 
the machine, a saw cuts the product to length and resets the 
encoder. The saw can also be activated manually. Manual 
activation will reset the encoder back to zero. In order for 
continuation of the process, a flying cutoff saw is used. The 
product can then be unloaded.  
 
2 RSLogix500 
 
The pultrusion machine is controlled by the use of PLCs. 
The SLC 505 platform utilizing RSLogix500 software is 
used in the current machines at Creative Pultrusions, Inc. 
The RSLogix500 uses basic ladder logic to control a 
process. The commands used are set up through data files. 
The data files are arranged by memory storage with specific 
names/numbers for each bit. The language is easy to use for 
those who know it. The learning curve is also relatively 
easy. However the programs created can be lengthy. Simple 
logic is often used such as comparison statements, timers, 
and move commands. There are more complicated actions 
to be used in RSLogix500. Up to this point, the project 
research has turned up little use of these. The number span 
is limited depending on the command used, due to the 
number of bits allowable. For example a counter can only 
count up to 9999. Therefore, multiple counters need to be 
used for applications that require a count higher than this. 
Other commands are limited to ± 32,767 for integers. For 
scaling purposes, this could limit the tolerance on some 
processes. However, the float values offer a much larger 
range of numbers. RSLogix500 has been implemented with 
success for many years at Creative Pultrusions, Inc. There 
has been a common problem though: troubleshooting any 
dilemma is a complicated task. People who are 
knowledgeable in the RSLogix500 programming may have 
difficulty deciphering the code. This could be due to the fact 
that several programmers have made changes to this code 
over the years; each one possessing a different 
programming style. With well over 900 rungs of ladder 
logic and 200 pages of code, finding a problem can be 
cumbersome. Even though there has been success with the 
SLC505 and RSLogix500, improvements can still be made 
to the control of the machine. 
 
 
3 Machine Control 
 



Session M3F 

San Juan, PR June 23-28, 2006 
9th International Conference on Engineering Education 

M3F-2 

Several areas of interest with respect to the operational 
control of the pultrusion machine were analyzed in this 
project.  As far as the PLC is concerned, these areas of main 
interest are broken down as follows:  heat zones, puller, 
saw, and hydraulics.  Hydraulics is a topic that will be 
interwoven throughout the machine functionality.  
Currently, the Allen-Bradley SLC505 is being used in 
conjunction with Rockwell Automation’s RSLogix500 
programming software and RSView for HMI Display.  

The main control of the heat zones in RSLogix500 is 
through PID (Proportional, Integral, Derivative) control.  
The set point, target temperature, for this system is initiated 
through the HMI. Depending on the product being 
pultruded, the set point will vary. Feedback needed for the 
PID operation comes from a thermocouple input. This is 
entered into the process variable, the current temperature, 
for the system. The controller output, CVEU, then 
determines the pulse sequence that will be implemented 
through the silicon-controlled rectifier (SCR). The SCR is 
used for pulse width modulation (PWM). The SCR pulses 
power to the heating elements in the product die.  The 
PWM, controlled through the use of timers, sets the pulse 
period depending on the controller output from the PID.   

Two cooling systems have been implemented, one at 
both the entrance and the exit of the die. These are 
controlled by simple open/close valve control that depends 
on the temperature of the cooling zone. In the current ladder 
logic, simple comparison statements are used. Because of 
the simplicity, this portion is lengthier than it need be. 
Cooling has been set to have a tolerance of ±3ºF.  If the 
temperature goes above the upper limit, the valve opens.  If 
the temperature goes below the lower limit, the valve closes.  
The cooling portion of the die is not needed for all products.  

With the web of control that is used for the heat zones, 
alarms are a must. Fault alarms sense if there are any 
connection problems, over or under heating situations, or 
disallowable user inputs from the HMI. The alarms appear 
on an alarm screen on the HMI, accompanied by the 
sounding of an audible alarm and flashing light. In order for 
the process to resume, the alarms must be cleared and reset.  
There are also certain conditions that must exist in order for 
the heating to initialize. These conditions can vary, but a 
few examples are:  a push button on or no alarms activated.  

The most difficult routine in this system is by far the 
pulling arrangement. An extremely complex program that is 
half the length of the total code controls the puller system. 
This complexity is partially due to the five different styles of 
pulling that can be implemented. Portions of the 
programmed code are repetitive.  For example, the puller 
speed utilizes the same programming approach only 
differing by the style of pulling.   Hydraulic cylinders power 
the pullers. A hydraulics card, available for the SLC 505, is 
used to control many of the settings for the hydraulic 
operations. This card uses two axes to control motion of the 
pullers. The third axis is used in the saw control, which will 
be discussed later. This card controls the speed, drift, 
acceleration, and deceleration of the pullers. Puller accuracy 
is determined by the tuning software and the quality of the 
servo valves. The pullers can be programmed to have purge 
modes. These modes stop the pulling cycle and help in 
keeping the die clear of debris. This task is very important 
for control purposes. Most of the puller code is implemented 

by using simple commands such as latches, moves, 
comparison statements, timers, and counters. These deal 
greatly with the position and force of the pullers. The 
hydraulics card plays a huge roll in this positioning; it keeps 
track of the exact location of the pullers at all times through 
feedback from the linear transducers and servo valving.  

The cutoff saw is the last major step of the pultrusion 
machine. The saw movement is accomplished utilizing 
hydraulics and pneumatics. Vertical movement utilize 
hydraulic cylinders. This is a discrete output to the 
hydraulic directional valve. The clamping and forward 
/reverse movements are pneumatics. The saw itself is a 
hydraulic controlled proportional valve. The PLC operates 
the saw through a sequential ladder logic program. The 
activation of the saw is performed through an encoder. The 
encoder monitors the amount of product pultruded. As with 
the other sections of this code, great care has been taken in 
setting up alarms. Alarm codes for any part of this process  
could fault. This is possibly the easiest area to troubleshoot 
only because it has recently been rewritten. However, it is 
still a tedious job with over 70 rungs of ladder logic. 
 
4 RSLogix5000 
 
RSLogix5000 is the latest in the Allen-Bradley series of 
PLC software.  RSLogix5000 uses one software package 
consisting of four styles of programming languages: ladder 
logic, structured text, function block diagrams, and 
sequential function charts. These programming languages 
can be used for control process, drives, sequential, and 
motion control1. This system lets the user create command 
labels through a tag-based platform. This allows the user to 
use a description of his/her choice for that command. The 
parameters for that command can then be specified to be a 
bit, integer, etc. Rockwell Software has stated the following 
about the RSLogix5000 platform2: 
• Intuitive and simple to use 
• Compliant IEC1131-3 interface 
• Structured programming by way of symbols and arrays 
• Instruction set supplying multiple applications 
• Integrates DCS systems or single-loop controllers and 

dedicated servo or drive systems into one environment 
• Online troubleshooting capabilities 
• Ability to create new tags while online 
Other capabilities are included but are beyond the scope of 
this document.   
 

CODE CONVERSION PROCESS 
 
It was decided that to fully assess the benefits and/or 
downfalls of applying RSLogix5000 to a real-world 
manufacturing process, some, if not all, of the code must be 
transcribed from its RSLogix500 form into the 
RSLogix5000 format.  This was done in two steps.  The 
first step was to decide which part of the pultrusion machine 
code would demonstrate the greatest contrast between the 
two software platforms.  And the second step was the actual 
implementation of the new programming language. 
 
1 Learning the RSLogix5000 System 
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The first step took considerable thought due to the vast 
possibilities of RSLogix5000’s four programming languages 
that are available.  Each language is best suited, but not 
limited to, specific electro-mechanical functionality.  For 
example, ladder logic, which was the sole programming 
option with the RSLogix500 software, is bested suited for 
[2]: 
• Execution of continuous or parallel operations 
• Binary operations 
• Logical operations that are complex 
• Processing of messages and other communications 
The function block diagram programming language can be 
used for: 
• Drive control and continuous processes 
• Control loops 
• Circuit flow calculations 
The sequential function chart (SFC) programming language 
works well in the following situations: 
• Managing multiple operations at a high level 
• Processes that are batched 
• Motion control 
• Sequential machine operations 
Finally, the structured text programming language can be 
used in combination with some of the other RSLogix5000 
programming languages. Rockwell Automation states in the 
Logix5000 Controllers Common Procedures Programming 
Manual that it is best suited for: 
• “Complex mathematical operations 
• Specialized array or table loop processing 
• ASCII string handling or protocol processing” 
For the scope of this paper, the function block diagram and 
sequential function chart programming languages will be 
used to accomplish our comparison between the 
RSLogix500 and the RSLogix5000.   

The first step in converting the code was to set up the 
RSLogix5000 platform. This included installing the 
controller and modules needed for this project. Upon 
opening the software, a continuous task, program, and 
ladder logic routine have already been set up. The names of 
these can be changed to suit the application.  Only one 
continuous task may be used in the project. A continuous 
task is one that will operate on a continual basis as long as 
the project is running. However, many periodic tasks can be 
used. The periodic tasks need to be set up for a time period. 
For example, this task could run every 500 milliseconds. 
Each task will have a corresponding program. The program 
will contain any created routines. Each program must have a 
main routine specified that will execute first. Within the 
routines, tags can be added. These tags may be program 
scoped (only available for use within the given program) or 
controller scoped (available for use throughout the project). 
 
2 Heating Zones 
 
One of the main objectives of the project was to condense 
the RSLogix500-based code utilizing one of the available 
languages in RSLogix5000.  The heat zone code proved to 
be a prime candidate for this conversion.  It was decided that 
function block diagram programming would be very 
effective in this situation.  The main reason for this decision 
was that the pultrusion process utilizes a PID command for 

temperature control.  The RSLogix5000 provides a PID 
command in the ladder logic and the function block diagram 
programming languages only.  It was decided that function 
block diagram programming could demonstrate the best 
approach for controlling the heating zones.   
Also, the heat zones are a continuous process which 
Rockwell software recommends function block 
programming for this type of control.   

The first obstacle was the implementation of the PIDE 
(Enhanced PID). The PIDE was created in a periodic task 
[2] due to suggestion from the Logix5000 Controllers 
Process Control and Drives Instructions manual from 
Allen-Bradley. All tags were created as controller tags, 
giving access to these tags from any routine. The most 
difficulty came from deciding which inputs and outputs to 
use. There are over 140 inputs and outputs to choose from. 
Some of these parameters are shown in figure 1. The PIDE 
can be used for a vast amount of control. In this project, 
basic PID control was sought. The input used for the 
process variable was to signify that of a thermocouple. The 
reading of the input was controlled through an RSView 
generated testing screen. The set point came from a 
randomly chosen number, in this case 350°F. The control 
variable output was to control the heat pulsing. Tags were 
created for the thermocouple and set point inputs. As will be 
shown later, the control variable has a direct connection to 
another function block so a tag was not created. 

Initial runs of the PIDE loop failed. Troubleshooting 
began with changes to the operational mode settings. There 
are many setting types, which can be used to control the 
PIDE. Those of concern to this project include auto or 
manual, program-auto, program-manual, operator-auto, 
operator-manual, program-program, program-operator, 
operator-program, operator-operator. Difficulty was had in 
determining the type of control needed to make the PIDE 
functional. It was important for the PIDE to run 
continuously without any user inputs. Therefore, program-
auto request was used in conjunction with auto and 
program-program request. With this combination of 
controls the program will request the PIDE to run in 
automatic mode. There will be no operator control of this 
function.  

After changing the above modes, no progress was made 
in running the PIDE loop. Through the online help menu of 
RSLogix5000, sample programs can be found. By 
comparing these programs with that of the project, certain 
differences were taken into consideration. One of these was 
the timing mode. The timing mode previously set was found 
in the RSLogix500 programming code. However in the 
conversion, it was found that a timing mode of  0, periodic 
mode, had to be used. This needs to be used due to the fact 
that the PIDE is in a period task.  After these modes were 
changed, the PIDE was in working order. The values for P, 
I, and D were chosen to exemplify the functionality of the 
heat zone process loop.  P, I, and D values will be adjusted 
according to individual processes.   

The control variable output (CVEU) of the PIDE 
function block was used as an input to the heating element 
pulsing.  The pulsing element used was a Split Range Time 
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FIGURE 1 
PIDE FUNCTION BLOCK 

 
Proportional (SRTP) function block, shown in figure 2.  
This instruction converts the CVEU output from the PIDE 
into a digital pulse.  This digital pulse output will be used to 
control the SCR.  Problems were encountered during 
implementation of the SRTP.  The SRTP is designed to 
control heating and cooling in one loop.  The die for the 
pultrusion machine consisted of two separate loops 
governing the heating and cooling zones.  An alternate 
method of heating element control was found utilizing the 
Position Proportional (POSP) function block.  This 
instruction uses a cycle time based on the percentage of 
control variable output to pulse the SCR on and off.   
In order for the POSP to control the SCR, shown in figure 3, 
the CVEU (PIDE) was wired to the set point input (POSP).  
The POSP has OpenOut and CloseOut as outputs.  Ideally, 
both of these outputs needed to be wired to the SCR, but the 
RSLogix5000 protocol would not permit this.  The OpenOut 
was wired to the SCR input and appeared to be functioning 
correctly at first.  After closer examination, it was found that 
the POSP output pulse was not proportional to the PIDE 
CVEU output.  Further experimentation with the SRTP 
command demonstrated the possibility of effective operation 
within the heating zone code.  The SRTP was made useful 
in the “heating only” code application by, in essence, 
eliminating the cooling output.  This was obtained by 
entering a small value in the MinCoolIn parameter of the 
SRTP.  With the newly programmed SRTP, the PID heating 
zone code appeared to be functioning correctly.  Again, final 

adjustment of the SRTP parameters would be attained 
during actual application commissioning.   

 

2
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FIGURE 2 
SPLIT RANGE TIME PROPORTIONAL 

 
POSP_01
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0
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FIGURE 3 
POSITION PROPORTIONAL 

 
Some of the lower level programming involved in the 
heating zone routine consisted of the utilization of the Scale 
(SCL) command.  This command is nothing new to 
Rockwell Software.  It is found in both the ladder logic 
programming and the function block diagram programming 
formats.  The SCL was used to scale the actual inputs from 
either the operator HMI or the thermocouples.  The main 
idea being that the level of temperature control resolution 
needed to be maintained, if not exceeded, by the conversion 
from the RSLogix500 programming to the RSLogix5000 
programming with respect to the die heating process. 

With the above ideas several sheets were created for 
the heating zones. These sheets were identical except for the 
zone activated. It was found the length of code was cut 
down. This will be a benefit that will aid in troubleshooting 
if any problems were to occur. The conversion of the 
heating process code encompasses the major portions of the 
RSLogix500 code. The RSLogix5000 function block 
diagram does not cover every aspect of the original code. 
The complete programmed code is shown figure 4.  
 
3  Cooling Zones 
 
Initially, it was planned to include the heating and cooling 
control loops together in one central command FBD 
program routine.  But, after more consulting with Creative 
Pultrusion’s manufacturing engineers, it was found that 
these two processes needed to be controlled under very 
different circumstances.  If the heating and cooling
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FIGURE 4 
NEW HEATING ZONE CODE IN FUNCTION BLOCK DIAGRAM AS PROGRAMMED IN RSLOGIX5000 

 

 
processes were aimed at attaining one temperature 
throughout, then the utilization of the SRTP heating and 
cooling output pulses would be very effective.  This was not 
the case. The original RSLogix500 code consisted of a 
temperature low limit and a temperature high limit that are 
continuously compared to a thermocouple input.  The 
conversion of the cooling zone was simple to implement 
Using nothing more than a Greater Than or Equal To 
(GEQ), a Less Than or Equal To (LEQ), and a Discrete 2-
State Device (D2SD) command, the cooling valve was 
commanded full open or full closed.  Refer to figure 5 for 
the D2SD command. It is worth noting that this process 
could be regulated utilizing a PIDE function block loop, but 
the current pultrusion process does not warrant this 
magnitude of precision temperature control. The 
implementation of the D2SD was much simpler than trying 
to utilize a PIDE function block. To show the functionality 
of the D2SD an example will be given.  

A cooling zone has an ideal temperature of 40°F ±3°. 
The high limit in this situation is 43°F and the low limit is 
37°F. A comparison will be made between the 
thermocouple input and the limits. As shown in figure 6, the 
high limit is connected to the ProgCommand; the low limit 
controls the State0Perm (State 0 Permissive). The D2SD 
looks at the ProgCommand to set the input high or low. If 
the temperature is 50°F, the valve will be open; Out will be 
high. If the temperature drops to 40°F, Out will still be  
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FIGURE 5 
DISCRETE 2-STATE DEVICE 

 
high. The State0Perm prohibits the output from going low 
until this input becomes high. Once the temperature drops 
below 37°F, Out will become a low. The cooling could also 
be set up in several other ways. For example, the State 1 
Permissive (State1Perm) could be used to control the high 
limit.  
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The cooling zones are much easier to decipher with the 
conversion. In this case, the code was not condensed. 
However, it is felt that troubleshooting will be easier.  
 
4  Saw 
 
Exploration into the realm of RSLogix5000’s sequential 
function chart programming language was addressed 
utilizing Creative Pultrusion’s flying cutoff saw code.  After 
careful review of the existing RSLogix500-based program, 
it was found that the saw control could be accomplished 
with a handful of steps and transitions as compared to more 
than 70 rungs of ladder logic.  An initial ladder routine was 
used to establish a starting point for the saw.  Basically, 
once all start conditions are met, along with the encoder 
output reaching the HMI input desired part length, the 
program will jump to a SFC subroutine.  This is where each 
step of the saw operation transpires. The SFC routine has 
the saw cycling through 5 steps, which each consist of one 
or more actions that are commanded.  These 5 steps consist 
of the following operations:  (1) part clamp down, blade 
motor on, dust gate on: (2) Saw head down, encoder output 
set to zero; (3) saw cross cut; (4) saw head up, blade motor 
off, dust gate off; (5) saw clamp up, saw to home position.  
Each step transitions by way of sensor inputs indicating the 
end of travel, or by the completion of an individual process 

in the overall makeup of the saw operation. This program 
can also be seen in figures 6 and 7. 
 
5  Additional Program Upgrades 
 
As time permitted throughout this project, different 
portions of the pultrusion machine programming were 
experimented with using the available languages contained 
within RSLogix5000.  The basis for these experiments was 
to try to simplify not only the efficiency of operation, but 
also the opportunity for effective future troubleshooting of 
the code.  One such area looked at was the Die Set-Up 
programming code.  It was found that some repetitiveness 
was involved when looking at the prerequisites to obtain 
die table lift and lower output commands.  The idea was to 
have one XIC input command the activation of the table up 
and the table down movements.  This was done using a 
small FBD program.  This routine can be seen in figures 8 
and 9. This program consisted of all the potential 
prerequisites flowing through a Boolean Or (BOR) and a 
Boolean And (BAND) function block combination.  This 
combination had a single output, which was given the same 
tag name as the XIC input in the ladder routine.  With 
further research, it is conceivable that the whole Die Set-Up 
program could be accomplished with one simple FBD 
routine.  
 

 

... -

Saw_Step_3

N ... Action_008

Saw_Cross_Cut:=1;   

... Saw_Cross_Cut_Complete

Saw_Cross_Cut_Finished_Proximity_Sensor    

... -

Saw_Step_4

N ... Action_013

Saw_Head_Down:=0; 

N ... Action_005

Blade_Motor_On:=0;   

N ... Action_006

Dust_Gate_On:=0;   

... Saw_Head_Up

Saw_Head_Up_Sensor 

... -

Saw_Step_5

N ... Action_004

Saw_Clamp_Solenoid_Down:=0;  

N ... Action_009

Saw_Cross_Cut:=0;   

... Saw_Start_Condi tions_Met

Encoder_Output = Desired_Part_Length           
& Saw_Start_Conditions & not Saw_Cycle_Stop    
                                               

... -

Saw_Step_1

N ... Action_000

Saw_Clamp_Solenoid_Down:=1;  

N ... Action_001

Blade_Motor_On:=1; 

N ... Action_003

Dust_Gate_On:=1; 

... Saw_Ready_To_Cut

Saw_Clamp_Down & Blade_Motor_At_Speed  

... -

Saw_Step_2

N ... Action_002

Saw_Head_Down:=1; 

N ... Action_007

Encoder_Output:= 0; 

... Saw_Head_In_Place

Saw_Head_Down_Sensor   ... Saw_Home

Saw_Cross_Cut_Home_Sensor  

...

Wait_State

 
 

FIGURE 6 
NEW SAW CODE IN SEQUENTIAL FUNCTION CHART AS PROGRAMMED IN RSLOGIX5000 
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FIGURE 7 

NEW SAW CODE IN LADDER LOGIC AS PROGRAMMED IN RSLOGIX5000 

 

Hydrual ic_Power_HMI_PB_On
1

BOR_02

BOR ...

Boolean Or

In1

In2

Out
0

Set_Up_Mode_Selected_HMI
0

Table_Move_OK

Input_Power
1

Manual_Pause_Active
1

BAND_03

BAND ...

Boolean And

In1

In2

In3

Out
0

 
 

FIGURE 8 
NEW DIE SET-UP CODE IN FUNCTIONAL BLOCK DIAGRAM AS PROGRAMMED IN RSLOGIX5000 

 

             
FIGURE 9 

NEW DIE SET-UP CODE IN LATTER  LOGIC AS PROGRAMMED IN RSLOGIX5000 
 

 
CONCLUSION 

 
The partial conversion of the pultrusion machine 
programming from RSLogix500 to RSLogix5000 has 
made clear that there are benefits to be attained.  It can be 
seen that the programming versatility alone could make 
the conversion from the RSLogix500 platform to the 
RSLogix5000 platform a worthwhile venture.  With four 
different programming languages at your disposal, 
almost every electro-mechanical control application 
conceivable can be accomplished through the 
implementation of Rockwell Software’s RSLogix5000 
software. Due to the multiple programming languages, 
the code was able to be shortened. Each programming 
language has a topic that it has been designed for. With 
this in mind, the ladder logic pertaining to the heating 
zones was more suitable for function block diagrams than 
ladder logic. The commands are more suitable to 
particular applications and, therefore, shortened the code. 

Another benefit is having the ability to program all 
inputs and outputs using descriptive tags.  It was obvious 
through the project code writing processes that a program 
with tags would make a program not only easier to 
follow, but easier to troubleshoot.  Additionally, the 
ability to monitor and change tag values, while the 
program is online, has been a benefit.  For example, gain 
values for a PIDE function block can be changed online 
to optimize your PID curve.  The result of this tuning can 
be seen almost instantaneously and will not disrupt the 
other program functions.   

This project has found one main disadvantage to the 
conversion.  Creative Pultrusions, Inc. is an example 
where it might not be beneficial to convert to 
RSLogix5000. Their pultrusion machines function well 
with their present RSLogix500 platform.  Therefore, the 
cost for the platform upgrade and the accompanied 
learning curve for RSLogix5000  are not justifiable at 
this time. 
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