
Session M3F

San Juan, PR June 23-28, 2006
9th International Conference on Engineering Education

M3F-1

Benefit of Converting to RSLogix 5000 From
RSLogix 500

Richard P. Crum, Jayme L. Davis, and Peter J. Shull

The Pennsylvania State University, Altoona, PA, USA

Abstract - In conjunction with Creative Pultrusions, Inc.,
a fiberglass reinforced polymer composites manufactur-
er in Alum Bank, PA, a senior project was designed to
convert the machine operation code for their pultruders
from the Rockwell Automation’s RSLogix500 software
to the RSLogix5000 software. This project was a cap-
stone design for the Electro-Mechanical Engineering
Technology program at Penn State Altoona. The
specific aim was to show the benefits of RSLogix5000
while improving the pultruding system at Creative
Pultrusions, Inc. By streamlining the existing code,
troubleshooting could become more efficient. In order
to convert the code, a complete understanding of the
pultrusion process was necessary along with that of both
the RSLogix500 software and RSLogix5000 software.
This document will discuss background information
pertaining to Creative Pultrusions, Inc., RSLogix500
software and RSLogix5000 software in addition to the
machine code conversion and testing processes.

Keyword: quality control, latter algorithms, programmable
logic controllers, process equipment.

INTRODUCTION

In the vast world of automated manufacturing,
programmable logic controllers (PLCs) are one of the most
reliable and effective means of controlling any electro-
mechanical process. Creative Pultrusions, Inc. is a company,
which implements the use of PLCs throughout their
manufacturing process. Creative Pultrusions, Inc., a high
strength pultruded fiberglass reinforced polymer composites
manufacturer, was the foundation of the project research.
The project was to convert the existing program, which is in
RSLogix500, to the latest Rockwell PLC software, the
RSLogix5000.

1 Pultrusion Process

Pultrusion is one of the many processes of producing
fiberglass reinforced polymer composites. The pultrusion
process starts by feeding fiberglass, woven fabrics,
continuous strand mat, or carbon material through a series of
creels [1]. This aligns and guides the material for entry into
the die. As the material enters the die, it is impregnated with
resin. Polyester, vinyl ester, and epoxies are typical resins
that are used [1]. Excess resin is recycled back through the
process. Once in the die, the heating process begins. The die
has multiple heat zones to cure the material. Depending on
the product, the set point for these zones will vary. The
material is cured by an exothermic chemical reaction. There
are catalysts in the resin that react once a certain

temperature is reached. Heat will continue to be released by
this process and allow the internal temperature of the
product to exceed that of the die walls. After curing, the
product is extracted from the die. The material is pulled
through the pultruding machine by two hydraulic clamps.
An encoder is used to monitor the length of material
pultruded. When a desired length has been pulled through
the machine, a saw cuts the product to length and resets the
encoder. The saw can also be activated manually. Manual
activation will reset the encoder back to zero. In order for
continuation of the process, a flying cutoff saw is used. The
product can then be unloaded.

2 RSLogix500

The pultrusion machine is controlled by the use of PLCs.
The SLC 505 platform utilizing RSLogix500 software is
used in the current machines at Creative Pultrusions, Inc.
The RSLogix500 uses basic ladder logic to control a
process. The commands used are set up through data files.
The data files are arranged by memory storage with specific
names/numbers for each bit. The language is easy to use for
those who know it. The learning curve is also relatively
easy. However the programs created can be lengthy. Simple
logic is often used such as comparison statements, timers,
and move commands. There are more complicated actions
to be used in RSLogix500. Up to this point, the project
research has turned up little use of these. The number span
is limited depending on the command used, due to the
number of bits allowable. For example a counter can only
count up to 9999. Therefore, multiple counters need to be
used for applications that require a count higher than this.
Other commands are limited to ± 32,767 for integers. For
scaling purposes, this could limit the tolerance on some
processes. However, the float values offer a much larger
range of numbers. RSLogix500 has been implemented with
success for many years at Creative Pultrusions, Inc. There
has been a common problem though: troubleshooting any
dilemma is a complicated task. People who are
knowledgeable in the RSLogix500 programming may have
difficulty deciphering the code. This could be due to the fact
that several programmers have made changes to this code
over the years; each one possessing a different
programming style. With well over 900 rungs of ladder
logic and 200 pages of code, finding a problem can be
cumbersome. Even though there has been success with the
SLC505 and RSLogix500, improvements can still be made
to the control of the machine.

3 Machine Control

Session M3F

San Juan, PR June 23-28, 2006
9th International Conference on Engineering Education

M3F-2

Several areas of interest with respect to the operational
control of the pultrusion machine were analyzed in this
project. As far as the PLC is concerned, these areas of main
interest are broken down as follows: heat zones, puller,
saw, and hydraulics. Hydraulics is a topic that will be
interwoven throughout the machine functionality.
Currently, the Allen-Bradley SLC505 is being used in
conjunction with Rockwell Automation’s RSLogix500
programming software and RSView for HMI Display.

The main control of the heat zones in RSLogix500 is
through PID (Proportional, Integral, Derivative) control.
The set point, target temperature, for this system is initiated
through the HMI. Depending on the product being
pultruded, the set point will vary. Feedback needed for the
PID operation comes from a thermocouple input. This is
entered into the process variable, the current temperature,
for the system. The controller output, CVEU, then
determines the pulse sequence that will be implemented
through the silicon-controlled rectifier (SCR). The SCR is
used for pulse width modulation (PWM). The SCR pulses
power to the heating elements in the product die. The
PWM, controlled through the use of timers, sets the pulse
period depending on the controller output from the PID.

Two cooling systems have been implemented, one at
both the entrance and the exit of the die. These are
controlled by simple open/close valve control that depends
on the temperature of the cooling zone. In the current ladder
logic, simple comparison statements are used. Because of
the simplicity, this portion is lengthier than it need be.
Cooling has been set to have a tolerance of ±3ºF. If the
temperature goes above the upper limit, the valve opens. If
the temperature goes below the lower limit, the valve closes.
The cooling portion of the die is not needed for all products.

With the web of control that is used for the heat zones,
alarms are a must. Fault alarms sense if there are any
connection problems, over or under heating situations, or
disallowable user inputs from the HMI. The alarms appear
on an alarm screen on the HMI, accompanied by the
sounding of an audible alarm and flashing light. In order for
the process to resume, the alarms must be cleared and reset.
There are also certain conditions that must exist in order for
the heating to initialize. These conditions can vary, but a
few examples are: a push button on or no alarms activated.

The most difficult routine in this system is by far the
pulling arrangement. An extremely complex program that is
half the length of the total code controls the puller system.
This complexity is partially due to the five different styles of
pulling that can be implemented. Portions of the
programmed code are repetitive. For example, the puller
speed utilizes the same programming approach only
differing by the style of pulling. Hydraulic cylinders power
the pullers. A hydraulics card, available for the SLC 505, is
used to control many of the settings for the hydraulic
operations. This card uses two axes to control motion of the
pullers. The third axis is used in the saw control, which will
be discussed later. This card controls the speed, drift,
acceleration, and deceleration of the pullers. Puller accuracy
is determined by the tuning software and the quality of the
servo valves. The pullers can be programmed to have purge
modes. These modes stop the pulling cycle and help in
keeping the die clear of debris. This task is very important
for control purposes. Most of the puller code is implemented

by using simple commands such as latches, moves,
comparison statements, timers, and counters. These deal
greatly with the position and force of the pullers. The
hydraulics card plays a huge roll in this positioning; it keeps
track of the exact location of the pullers at all times through
feedback from the linear transducers and servo valving.

The cutoff saw is the last major step of the pultrusion
machine. The saw movement is accomplished utilizing
hydraulics and pneumatics. Vertical movement utilize
hydraulic cylinders. This is a discrete output to the
hydraulic directional valve. The clamping and forward
/reverse movements are pneumatics. The saw itself is a
hydraulic controlled proportional valve. The PLC operates
the saw through a sequential ladder logic program. The
activation of the saw is performed through an encoder. The
encoder monitors the amount of product pultruded. As with
the other sections of this code, great care has been taken in
setting up alarms. Alarm codes for any part of this process
could fault. This is possibly the easiest area to troubleshoot
only because it has recently been rewritten. However, it is
still a tedious job with over 70 rungs of ladder logic.

4 RSLogix5000

RSLogix5000 is the latest in the Allen-Bradley series of
PLC software. RSLogix5000 uses one software package
consisting of four styles of programming languages: ladder
logic, structured text, function block diagrams, and
sequential function charts. These programming languages
can be used for control process, drives, sequential, and
motion control1. This system lets the user create command
labels through a tag-based platform. This allows the user to
use a description of his/her choice for that command. The
parameters for that command can then be specified to be a
bit, integer, etc. Rockwell Software has stated the following
about the RSLogix5000 platform2:
• Intuitive and simple to use
• Compliant IEC1131-3 interface
• Structured programming by way of symbols and arrays
• Instruction set supplying multiple applications
• Integrates DCS systems or single-loop controllers and

dedicated servo or drive systems into one environment
• Online troubleshooting capabilities
• Ability to create new tags while online
Other capabilities are included but are beyond the scope of
this document.

CODE CONVERSION PROCESS

It was decided that to fully assess the benefits and/or
downfalls of applying RSLogix5000 to a real-world
manufacturing process, some, if not all, of the code must be
transcribed from its RSLogix500 form into the
RSLogix5000 format. This was done in two steps. The
first step was to decide which part of the pultrusion machine
code would demonstrate the greatest contrast between the
two software platforms. And the second step was the actual
implementation of the new programming language.

1 Learning the RSLogix5000 System

Session M3F

San Juan, PR June 23-28, 2006
9th International Conference on Engineering Education

M3F-3

The first step took considerable thought due to the vast
possibilities of RSLogix5000’s four programming languages
that are available. Each language is best suited, but not
limited to, specific electro-mechanical functionality. For
example, ladder logic, which was the sole programming
option with the RSLogix500 software, is bested suited for
[2]:
• Execution of continuous or parallel operations
• Binary operations
• Logical operations that are complex
• Processing of messages and other communications
The function block diagram programming language can be
used for:
• Drive control and continuous processes
• Control loops
• Circuit flow calculations
The sequential function chart (SFC) programming language
works well in the following situations:
• Managing multiple operations at a high level
• Processes that are batched
• Motion control
• Sequential machine operations
Finally, the structured text programming language can be
used in combination with some of the other RSLogix5000
programming languages. Rockwell Automation states in the
Logix5000 Controllers Common Procedures Programming
Manual that it is best suited for:
• “Complex mathematical operations
• Specialized array or table loop processing
• ASCII string handling or protocol processing”
For the scope of this paper, the function block diagram and
sequential function chart programming languages will be
used to accomplish our comparison between the
RSLogix500 and the RSLogix5000.

The first step in converting the code was to set up the
RSLogix5000 platform. This included installing the
controller and modules needed for this project. Upon
opening the software, a continuous task, program, and
ladder logic routine have already been set up. The names of
these can be changed to suit the application. Only one
continuous task may be used in the project. A continuous
task is one that will operate on a continual basis as long as
the project is running. However, many periodic tasks can be
used. The periodic tasks need to be set up for a time period.
For example, this task could run every 500 milliseconds.
Each task will have a corresponding program. The program
will contain any created routines. Each program must have a
main routine specified that will execute first. Within the
routines, tags can be added. These tags may be program
scoped (only available for use within the given program) or
controller scoped (available for use throughout the project).

2 Heating Zones

One of the main objectives of the project was to condense
the RSLogix500-based code utilizing one of the available
languages in RSLogix5000. The heat zone code proved to
be a prime candidate for this conversion. It was decided that
function block diagram programming would be very
effective in this situation. The main reason for this decision
was that the pultrusion process utilizes a PID command for

temperature control. The RSLogix5000 provides a PID
command in the ladder logic and the function block diagram
programming languages only. It was decided that function
block diagram programming could demonstrate the best
approach for controlling the heating zones.
Also, the heat zones are a continuous process which
Rockwell software recommends function block
programming for this type of control.

The first obstacle was the implementation of the PIDE
(Enhanced PID). The PIDE was created in a periodic task
[2] due to suggestion from the Logix5000 Controllers
Process Control and Drives Instructions manual from
Allen-Bradley. All tags were created as controller tags,
giving access to these tags from any routine. The most
difficulty came from deciding which inputs and outputs to
use. There are over 140 inputs and outputs to choose from.
Some of these parameters are shown in figure 1. The PIDE
can be used for a vast amount of control. In this project,
basic PID control was sought. The input used for the
process variable was to signify that of a thermocouple. The
reading of the input was controlled through an RSView
generated testing screen. The set point came from a
randomly chosen number, in this case 350°F. The control
variable output was to control the heat pulsing. Tags were
created for the thermocouple and set point inputs. As will be
shown later, the control variable has a direct connection to
another function block so a tag was not created.

Initial runs of the PIDE loop failed. Troubleshooting
began with changes to the operational mode settings. There
are many setting types, which can be used to control the
PIDE. Those of concern to this project include auto or
manual, program-auto, program-manual, operator-auto,
operator-manual, program-program, program-operator,
operator-program, operator-operator. Difficulty was had in
determining the type of control needed to make the PIDE
functional. It was important for the PIDE to run
continuously without any user inputs. Therefore, program-
auto request was used in conjunction with auto and
program-program request. With this combination of
controls the program will request the PIDE to run in
automatic mode. There will be no operator control of this
function.

After changing the above modes, no progress was made
in running the PIDE loop. Through the online help menu of
RSLogix5000, sample programs can be found. By
comparing these programs with that of the project, certain
differences were taken into consideration. One of these was
the timing mode. The timing mode previously set was found
in the RSLogix500 programming code. However in the
conversion, it was found that a timing mode of 0, periodic
mode, had to be used. This needs to be used due to the fact
that the PIDE is in a period task. After these modes were
changed, the PIDE was in working order. The values for P,
I, and D were chosen to exemplify the functionality of the
heat zone process loop. P, I, and D values will be adjusted
according to individual processes.

The control variable output (CVEU) of the PIDE
function block was used as an input to the heating element
pulsing. The pulsing element used was a Split Range Time

Session M3F

San Juan, PR June 23-28, 2006
9th International Conference on Engineering Education

M3F-4

PIDE_02

PIDE ...

Enhanced PID

PV

SPProg

SPCascade

RatioProg

CVProg

FF

HandFB

ProgProgReq

ProgOperReq

ProgCasRatReq

ProgAutoReq

ProgManualReq

ProgOverrideReq

ProgHandReq

CVEU
0.0

SP
0.0

PVHHAlarm
0

PVHAlarm
0

PVLAlarm
0

PVLLAlarm
0

PVROCPosAlarm
0

PVROCNegAlarm
0

DevHHAlarm
0

DevHAlarm
0

DevLAlarm
0

DevLLAlarm
0

ProgOper
0

CasRat
0

Auto
0

Manual
0

Override
0

Hand
0

AutotuneT ag ?

FIGURE 1
PIDE FUNCTION BLOCK

Proportional (SRTP) function block, shown in figure 2.
This instruction converts the CVEU output from the PIDE
into a digital pulse. This digital pulse output will be used to
control the SCR. Problems were encountered during
implementation of the SRTP. The SRTP is designed to
control heating and cooling in one loop. The die for the
pultrusion machine consisted of two separate loops
governing the heating and cooling zones. An alternate
method of heating element control was found utilizing the
Position Proportional (POSP) function block. This
instruction uses a cycle time based on the percentage of
control variable output to pulse the SCR on and off.
In order for the POSP to control the SCR, shown in figure 3,
the CVEU (PIDE) was wired to the set point input (POSP).
The POSP has OpenOut and CloseOut as outputs. Ideally,
both of these outputs needed to be wired to the SCR, but the
RSLogix5000 protocol would not permit this. The OpenOut
was wired to the SCR input and appeared to be functioning
correctly at first. After closer examination, it was found that
the POSP output pulse was not proportional to the PIDE
CVEU output. Further experimentation with the SRTP
command demonstrated the possibility of effective operation
within the heating zone code. The SRTP was made useful
in the “heating only” code application by, in essence,
eliminating the cooling output. This was obtained by
entering a small value in the MinCoolIn parameter of the
SRTP. With the newly programmed SRTP, the PID heating
zone code appeared to be functioning correctly. Again, final

adjustment of the SRTP parameters would be attained
during actual application commissioning.

2

SRTP_03

SRTP ...

Spl i t Range T ime Proportional

In

CycleT ime

MaxHeatIn

MinHeatIn

HeatOut
0

CoolOut
0

HeatT imePercent
0.0

CoolT imePercent
0.0

FIGURE 2
SPLIT RANGE TIME PROPORTIONAL

POSP_01

POSP ...

Posi tion Proportional

SP

Position

OpenedFB

ClosedFB

OpenOut
0

CloseOut
0

FIGURE 3
POSITION PROPORTIONAL

Some of the lower level programming involved in the
heating zone routine consisted of the utilization of the Scale
(SCL) command. This command is nothing new to
Rockwell Software. It is found in both the ladder logic
programming and the function block diagram programming
formats. The SCL was used to scale the actual inputs from
either the operator HMI or the thermocouples. The main
idea being that the level of temperature control resolution
needed to be maintained, if not exceeded, by the conversion
from the RSLogix500 programming to the RSLogix5000
programming with respect to the die heating process.

With the above ideas several sheets were created for
the heating zones. These sheets were identical except for the
zone activated. It was found the length of code was cut
down. This will be a benefit that will aid in troubleshooting
if any problems were to occur. The conversion of the
heating process code encompasses the major portions of the
RSLogix500 code. The RSLogix5000 function block
diagram does not cover every aspect of the original code.
The complete programmed code is shown figure 4.

3 Cooling Zones

Initially, it was planned to include the heating and cooling
control loops together in one central command FBD
program routine. But, after more consulting with Creative
Pultrusion’s manufacturing engineers, it was found that
these two processes needed to be controlled under very
different circumstances. If the heating and cooling

Session M3F

San Juan, PR June 23-
28, 2006

9th International Conference on Engineering Education
M3F-5

Heat_Zone_1_PID

PIDE ...

Enhanced PID

EnableIn

PV

PVFault

PVEUMax

PVEUMin

SPProg

SPOper

SPHLimit

SPLLim it

CVFault

CVEUMax

CVEUMin

DependIndepend

PGain

IGain

ProgProgReq

ProgAutoReq

T im ingMode

CVEU
4.926621

Auto
1

Manual
0

AutotuneTag ?

Heat_Zone_1_On_Condition

BAND ...

Boolean And

In1

In2

In3

In4

Out
1

Input_Power
1

Heat_Zone_1_PB
1

TC_Not_Faulted[1]
1

Heat_Zone_1_Scale

SCL ...

Scale

EnableIn

In

InRawMax

InRawMin

InEUMax

InEUMin

Out
600.0

T C_Input[1]
300.0

SP_Output_For_Heat_Zones
700.0

1-E4

SCR_Fault[1]
0

Heat_Zone_1_PB
1

SRT P_Heat_Zone_1

SRTP ...

Spl i t Range T ime Proportional

EnableIn

In

CycleT ime

HeatOut
0

HeatT imePercent
4.8843656

SRT P_Heat_Out_Heat_Zone_1

Set_Point_Scaled

SCL ...

Scale

In

InRawMax

InRawMin

InEUMax

InEUMin

Out
700.0

Set_Point_for_Heat_Zones
350.0

SP_Output_For_Heat_Zones

1-B3

3-B3

5-B3

7-B3

2-B3

4-B3

6-B3

8-B3

FIGURE 4
NEW HEATING ZONE CODE IN FUNCTION BLOCK DIAGRAM AS PROGRAMMED IN RSLOGIX5000

processes were aimed at attaining one temperature
throughout, then the utilization of the SRTP heating and
cooling output pulses would be very effective. This was not
the case. The original RSLogix500 code consisted of a
temperature low limit and a temperature high limit that are
continuously compared to a thermocouple input. The
conversion of the cooling zone was simple to implement
Using nothing more than a Greater Than or Equal To
(GEQ), a Less Than or Equal To (LEQ), and a Discrete 2-
State Device (D2SD) command, the cooling valve was
commanded full open or full closed. Refer to figure 5 for
the D2SD command. It is worth noting that this process
could be regulated utilizing a PIDE function block loop, but
the current pultrusion process does not warrant this
magnitude of precision temperature control. The
implementation of the D2SD was much simpler than trying
to utilize a PIDE function block. To show the functionality
of the D2SD an example will be given.

A cooling zone has an ideal temperature of 40°F ±3°.
The high limit in this situation is 43°F and the low limit is
37°F. A comparison will be made between the
thermocouple input and the limits. As shown in figure 6, the
high limit is connected to the ProgCommand; the low limit
controls the State0Perm (State 0 Permissive). The D2SD
looks at the ProgCommand to set the input high or low. If
the temperature is 50°F, the valve will be open; Out will be
high. If the temperature drops to 40°F, Out will still be

D2SD_01

D2SD ...

Discrete 2-State Device

ProgCommand

State0Perm

State1Perm

FB0

FB1

HandFB

ProgProgReq

ProgOperReq

ProgOverrideReq

ProgHandReq

Out
0

Device0State
0

Device1State
0

CommandStatus
0

Faul tAlarm
0

ModeAlarm
0

ProgOper
0

Override
0

Hand
0

FIGURE 5
DISCRETE 2-STATE DEVICE

high. The State0Perm prohibits the output from going low
until this input becomes high. Once the temperature drops
below 37°F, Out will become a low. The cooling could also
be set up in several other ways. For example, the State 1
Permissive (State1Perm) could be used to control the high
limit.

Session M3F

San Juan, PR June 23-28, 2006
9th International Conference on Engineering Education

M3F-6

The cooling zones are much easier to decipher with the
conversion. In this case, the code was not condensed.
However, it is felt that troubleshooting will be easier.

4 Saw

Exploration into the realm of RSLogix5000’s sequential
function chart programming language was addressed
utilizing Creative Pultrusion’s flying cutoff saw code. After
careful review of the existing RSLogix500-based program,
it was found that the saw control could be accomplished
with a handful of steps and transitions as compared to more
than 70 rungs of ladder logic. An initial ladder routine was
used to establish a starting point for the saw. Basically,
once all start conditions are met, along with the encoder
output reaching the HMI input desired part length, the
program will jump to a SFC subroutine. This is where each
step of the saw operation transpires. The SFC routine has
the saw cycling through 5 steps, which each consist of one
or more actions that are commanded. These 5 steps consist
of the following operations: (1) part clamp down, blade
motor on, dust gate on: (2) Saw head down, encoder output
set to zero; (3) saw cross cut; (4) saw head up, blade motor
off, dust gate off; (5) saw clamp up, saw to home position.
Each step transitions by way of sensor inputs indicating the
end of travel, or by the completion of an individual process

in the overall makeup of the saw operation. This program
can also be seen in figures 6 and 7.

5 Additional Program Upgrades

As time permitted throughout this project, different
portions of the pultrusion machine programming were
experimented with using the available languages contained
within RSLogix5000. The basis for these experiments was
to try to simplify not only the efficiency of operation, but
also the opportunity for effective future troubleshooting of
the code. One such area looked at was the Die Set-Up
programming code. It was found that some repetitiveness
was involved when looking at the prerequisites to obtain
die table lift and lower output commands. The idea was to
have one XIC input command the activation of the table up
and the table down movements. This was done using a
small FBD program. This routine can be seen in figures 8
and 9. This program consisted of all the potential
prerequisites flowing through a Boolean Or (BOR) and a
Boolean And (BAND) function block combination. This
combination had a single output, which was given the same
tag name as the XIC input in the ladder routine. With
further research, it is conceivable that the whole Die Set-Up
program could be accomplished with one simple FBD
routine.

... -

Saw_Step_3

N ... Action_008

Saw_Cross_Cut:=1;

... Saw_Cross_Cut_Complete

Saw_Cross_Cut_Finished_Proximity_Sensor

... -

Saw_Step_4

N ... Action_013

Saw_Head_Down:=0;

N ... Action_005

Blade_Motor_On:=0;

N ... Action_006

Dust_Gate_On:=0;

... Saw_Head_Up

Saw_Head_Up_Sensor

... -

Saw_Step_5

N ... Action_004

Saw_Clamp_Solenoid_Down:=0;

N ... Action_009

Saw_Cross_Cut:=0;

... Saw_Start_Condi tions_Met

Encoder_Output = Desired_Part_Length
& Saw_Start_Conditions & not Saw_Cycle_Stop

... -

Saw_Step_1

N ... Action_000

Saw_Clamp_Solenoid_Down:=1;

N ... Action_001

Blade_Motor_On:=1;

N ... Action_003

Dust_Gate_On:=1;

... Saw_Ready_To_Cut

Saw_Clamp_Down & Blade_Motor_At_Speed

... -

Saw_Step_2

N ... Action_002

Saw_Head_Down:=1;

N ... Action_007

Encoder_Output:= 0;

... Saw_Head_In_Place

Saw_Head_Down_Sensor ... Saw_Home

Saw_Cross_Cut_Home_Sensor

...

Wait_State

FIGURE 6
NEW SAW CODE IN SEQUENTIAL FUNCTION CHART AS PROGRAMMED IN RSLOGIX5000

Session M3F

San Juan, PR June 23-28,
2006

9th International Conference on Engineering Education
M3F-7

FIGURE 7

NEW SAW CODE IN LADDER LOGIC AS PROGRAMMED IN RSLOGIX5000

Hydrual ic_Power_HMI_PB_On
1

BOR_02

BOR ...

Boolean Or

In1

In2

Out
0

Set_Up_Mode_Selected_HMI
0

Table_Move_OK

Input_Power
1

Manual_Pause_Active
1

BAND_03

BAND ...

Boolean And

In1

In2

In3

Out
0

FIGURE 8
NEW DIE SET-UP CODE IN FUNCTIONAL BLOCK DIAGRAM AS PROGRAMMED IN RSLOGIX5000

FIGURE 9

NEW DIE SET-UP CODE IN LATTER LOGIC AS PROGRAMMED IN RSLOGIX5000

CONCLUSION

The partial conversion of the pultrusion machine
programming from RSLogix500 to RSLogix5000 has
made clear that there are benefits to be attained. It can be
seen that the programming versatility alone could make
the conversion from the RSLogix500 platform to the
RSLogix5000 platform a worthwhile venture. With four
different programming languages at your disposal,
almost every electro-mechanical control application
conceivable can be accomplished through the
implementation of Rockwell Software’s RSLogix5000
software. Due to the multiple programming languages,
the code was able to be shortened. Each programming
language has a topic that it has been designed for. With
this in mind, the ladder logic pertaining to the heating
zones was more suitable for function block diagrams than
ladder logic. The commands are more suitable to
particular applications and, therefore, shortened the code.

Another benefit is having the ability to program all
inputs and outputs using descriptive tags. It was obvious
through the project code writing processes that a program
with tags would make a program not only easier to
follow, but easier to troubleshoot. Additionally, the
ability to monitor and change tag values, while the
program is online, has been a benefit. For example, gain
values for a PIDE function block can be changed online
to optimize your PID curve. The result of this tuning can
be seen almost instantaneously and will not disrupt the
other program functions.

This project has found one main disadvantage to the
conversion. Creative Pultrusions, Inc. is an example
where it might not be beneficial to convert to
RSLogix5000. Their pultrusion machines function well
with their present RSLogix500 platform. Therefore, the
cost for the platform upgrade and the accompanied
learning curve for RSLogix5000 are not justifiable at
this time.

ACKNOWLEDGMENTS

We would like to thank the following people at Creative
Pultrusions, Inc. for their contributions to this senior
project: Bob Trostle, John Plunkard, and Jason Blough.
We would also like to thank Dave Mayewski of
Rockwell Software for his insight pertaining to the code
conversion, and John Sjolander, Lab Coordinator at Penn
State Altoona, for continuous help throughout the
project. This project is particularly supported by NSF
under grant number 0127013.

REFERENCES
[1] Creative Pultrusions Inc. www.pultrude.com. Retrieved from

Internet at Penn State University, Altoona Campus. September 25,
2005.

[2] Rockwell Software. “RSLogix 5000 Enterprise Series Software
Technical Data.” 2001 Rockwell International Corporation.

[3] Allen-Bradley and Rockwell Automation. “Logix5000 Controllers
Common Procedures” Programming Manual. August 2002.

[4] Allen-Bradley and Rockwell Automation.
“Logix5000 Controllers Process Control and Drives
Instructions” Reference Manual. August 2002

