MICROCONTROLLER APPLICATIONS TEACHING
A PRACTICAL APPROACH

Clovis Fischer and José Carlos de Souza Jr.
Department of Electrical Engineering
Esc. de Engenharia Mauda, Sdao Caetano do Sul - SP, Brazil 09580-900
Universidade Sao Judas Tadeu, Sdo Paulo - SP, Brazil 03169-040

Abstract - There’s a broad field of applications for
the microcontroller technology, that can be
enumerated from simple, like small electric equipment
operation, until sophisticated, like single loop digital
controllers with man-machine and machine-machine
interface, also wusing complex digital control
techniques. The main preoccupation for us is to
transmit to an undergraduate student, who hadn’t
had any contact with this field, hardware and
software concepts, in an integrated and step by step
form, to develop and document a project using the
microcontroller technology. Among the various
microcontroller families existing in the market, we
choose the 8051 family, because of its popularity, but

the techniques can be migrated to another
microcontroller family, with small routine
modifications. The hardware modules were

constructed with low cost devices and with two
connectors types, to allow fast connection between
the modules, project integration and flexibility.

I. INTRODUCTION.

When teaching microprocessor applications in an
undergraduate course, we detected a lack of teaching
material that deals with real time and real software
location in memory, because the only available
resources were a microprocessor based board, with a
monitor program, keyboard and seven segment
display, where the instructions would be entered by
typing on the keyboard their hexadecimal code. This
was a very tedious task, especially when the student
discovered that there was a mistake in the beginning
of his hundred bytes code.

The solution taken was the construction of a low
cost PC based EEPROM EMULATOR, the
acquisition of a low cost PC ASSEMBLER -
LINKER, and the construction of a new board, now
focusing the microcontrollers, because of their
simplicity and functionality. We used the so popular
8051 family.

The EEPROM EMULATOR has 8 kbytes of size,
which is sufficient for all teaching and more elaborated
projects.

The MICROCONTROLLER BOARD has only
the microcontroller socket, with Port 1, Port 3, Port

0- Address/Data Bus, and Port 2-Address Bus
connected to dual connectors (one hole type and the
other, pin type), the latch for address demultiplexing,
one RAM and one EEPROM soquets connected to
the low microcontroller addresses and two small 16
pin dip soquets for general propose logic connections.
The dual connectors allows fast connections between
the microconttroller board and the other modules.

With this equipment, we can write the program in
a PC based text editor, in assembler level language
(or C language if disposable), generate the code for
the microcontroller, down-load the code in the
EEPROM EMULATOR, that was connected to the
MICROCONTROLLER BOARD and verify if the
program is running correctly, by means of signal
inspection through the microcontroller I/O ports, with
another hardware module connected to the I/O ports or
an oscilloscope if needed. This make possible the
real software location, with respect to the RESET and
interruption routines.

The most important aspects of this approach are
the low cost, easy to construct and the flexibility
achieved, that’s in accordance with our goals.

II. THE FIRST STEP: BASIC I/0O WITH PORTS.

The starting work with the teaching material is to
execute a simple program that transfers the bits
presented at the Port 3 to the Port 1, using a 8 LEDS
-8 KEYS I/O MODULE, as shown in Fig. 1.

The program listing is the following:

ORG 0000H

RESET

JIMP START

ORG 0030H

START

MOV A, Pl ; reads from the 8 KEYS
; and transfer from Port 1 to
; Accumulator

MOV P3, A ;and from it to Port 3,

; writing on the 8 LEDS

JMP START
.END
§LEDS -8 KEYS 1/0 MODULE
[swwwwaTn]

LEDS
© © 0 © 0 © 0 ©

KEYS

CIEE EIE R EIE

8 d s cables

PO OR
DO - D7
DATA BUS

MICROCONTROLLER BOARD

74LS373

A\
Pl
8051
P3|
B P2

A0 - A7
ADDRESS BU

AI)I)RFSS

RAM EPROM

GEN. PURPOSE A A

TTL SOQUETS OOUE OOUE
EPROM EMULATOR POD

PERSONAL

COMPUTER

Fig. 1. MICROCONTROLLER BOARD connected
to the EEPROM EMULATOR and the 8 LEDS
- 8 KEYS 'O MODULE

This program performs the content transfer from
Port 1
(microcontroler 8 pins parallel I/0, that is connected
to the 8 KEYS as an input driver) to the accumulator,
and from the accumulator to Port 3 (microcontroller 8

pins parallel I/O, connected to the 8 LEDS panel, as
an output driver).

At this step, the student learns what is a label, an
assembler directive (ORG and .END) and its
difference with respect to a microcontroller instruction
(JMP and MOV), learning also what is a
MOVement instruction, an unconditional JuMP
instruction, and its mnemonics.

Another subject of attention is the code generation
steps, that comprises the Source Code text editing,
the assembler phase and the linking phase. The final
binary file, that is chosen in an ASCII format is also
analyzed by the student.

III. EXPLORING THE ARITHMETIC AND
LOGIC INSTRUCTIONS

To explore the arithmetic and logic instructions,
the student is asked for implementing a modification
on his first program, that breaks the original byte, that
came from the 8 KEYS through Port 1, in two
registers located in the internal microcontroller RAM.
The first register must store the 4 least significant
bits, and the second register must store the 4 most
significant bits, shifted to the right four times.

Data read from P1
2021212212122 | pataz
010 |0 |0 |Ds| Dy D;| Dy| DATAI
00|00 |Dy] Dg|Ds|Dy| DATA2

Fig. 2. Register contents before and after program
execution

The program listing is the following:

DATAI1 .REG 30H
DATA2 .REG 31H
ORG 0000H
RESET
JMP START
ORG 0030H

START

MOV DATAIL, P1 ; read from the 8
; KEYS (Input)

MOV A, DATAI

ANL A, #FOH

RR A

RR A

RR A

RR A

MOV DATA2, A

MOV A, DATAI

ANL A, #0FH

MOV DATAIL, A

‘ARITHMETIC - LOGIC INSTRUCTIONS”

; at this point, the student can implement

; his arithmetic and logic instructions
between
; DATA1 and DATAZ2, through the
; Accumulator, leaving the results on the
; Accumulator
MOV P3,A ; write to the 8
; LEDS (Output)
JMP START
.END

With this modifications, the student learned the
“RR A” (Rotate Accumulator Right), the
“ANL A, #data” (logic and immediate byte with the
accumulator) instructions working as a masking
instruction, and how to specify an internal RAM
memory position as a register (DATA1 and DATA?2).
Other instructions, like “RL A” (Rotate Accumulator
Left) and the “SWAP” instructions, can also be
explored.

With another small instruction modifications in
the “ARITHMETIC - LOGIC INSTRUCTIONS”
source code area, he can explore the all ANL (Logical
And), “ORL” (Logical Or), “XRL” (Logical Ex-Or)
and “CPL A” (Complement Accumulator)
instructions performed by the 8051, and show its
results in the 8 LEDS panel, in a very interactive
way.

The Arithmetic instructions, like “ADD” (Add to
Accumulator), “ADDC” (Add to accumulator with
carry), “SUBB” (Subtract from Accumulator with
borrow), “INC” (Increment), “DEC” (Decrement),
“MUL” (Multiply) and “DIV” (Divide) can also be
explored and its operation learned with this program
and hardware modules.

“ARITHMETIC - LOGIC INSTRUCTIONS"

v

MOV A, DATAI
ADD A, DATA2

Another points to explore are the Subroutines and
Macros.

The subroutines are explained substituting the
code portion that deals with the “ARITHMETIC -
LOGIC” block by a “CALL label” instruction,
and creating a subroutine that performs the same task
as before. The result must be the same, if the program
was correctly written by the student.

“ARITHMETIC - LOGIC INSTRUCTIONS”

v

CALL ADDITION

The other program part becomes:

MOV P3, A
JMP START
ADDITION]
5 & B
RET
.END

The Macro, if disposable by the Assembler-Linker
software, can also be explained in a similar way, only
pointing out the differences between it and the
subroutine. Macro is faster than subroutine because it
hasn’t the “CALL label” - “RET” instruction pair,
but expends more program memory. A single macro
is expanded with its instructions each time it’s used.

If it’s desirable to show an increment/decrement
action, and the microcontroller is so fast to observe its
counting with the 8 LEDS panel, we can write a delay
subroutine and include it in the main program.

Other details have to be emphasized, like:

the wvarious addressing modes (immediate,
register, direct and indirect);

the stack operation and the Stack Pointer Register
in subroutine calls;

the flags and the Conditional Jumps, including
more elaborated loop instructions (CINE -
Compare and Jump if Not Equal, and DINZ -
Decrement and Jump if Not Zero)

the internal memory arrangement (general purpose
RAM and Special Function Registers).

All this resources can be explored in a very easy,
fast and interactive way with small programs, a little
bit of imagination and creativity, developing this
method of work on the student.

IV. EXPLORING THE BIT

INSTRUC-TIONS

ORIENTED

This kind of instructions, very powerful and very
common in microcontoller families, are explored in an
application way: a Logic Controller. Three bits
(P1.0, P1.1 and P1.2 in connection with 3 of the 8
KEYS) are used as the input of the Logic Controller
and three bits (P3.0, P3.1 and P3.2 in connection
with 3 of the 8 LEDS panel) are used as the output
signals. A State Machine, specified by a Ladder
Diagram is implemented using bit movement and bit
manipulation logic instructions (MOV C,bit; ANL
C,bit and
ORL C,bit for example) as shown in Fig. 3.

The RL1, RL2 and RL3 labels are internal bit
registers, which are located in the bit addressable area
of the internal RAM. These bits can be set (logic
level 1) or reset (logic level 0) by means of the
“SETB bit” and “CLR bit” instructions
respectively.

At this point, the student learned almost all 8051
instructions and internal memory organization.

CH3 CHI1 CH2
RLI RL2 RL3
RL3 RLI RL2
/
\. RL2 _Ru \. RLI

weh wEp ek

Fig. 3 The Logic Controller Ladder Diagram.

V. THE INTERRUPTIONS

The interrupts are very important when
asynchronous interface between the high speed
microcontroller and low speed real world is required.

Its hardware interface and software can be learned
using an external adjustable clock generator (a
function generator or a small 555 oscillator for
example) with TTL compatible output and variable
frequency. This signal must be applied to an interrupt
input (P3.2 for INTO or P3.3 for INTI1), the
application program written, taking care to enable
the selected external interruption source . As a
suggestion, we can implement an increment counter
with the accumulator, that increments each time one
interrupt is recognized, and the accumulator value
showed by means of a “MOV P1, A” instruction,
that show its contents on the 8 LEDS panel.

Care must be taken when dealing with interrupts,
principally with respect to the stack growing.
“PUSH” and “POP” instructions are explained and
how to use them.

VI. PRECISION TIMING: THE TIMERS

A very important hardware resource is the
Timer/Counter. The Timer 0 is programmed as a
timer with auto reload and operate in interrupt mode,
to temporize 10 ms. This timing is used to increment
a counter (one position of internal RAM, labeled
COUNT _1S) from 1 to 100, resulting in a total
timing of 1 second.

The student can observe the 10 ms timing using
an oscilloscope and analyzing the signal of one port
pin (P3.7 for example), toggling this pin with the
instruction “CPL P3.7” each time the 10 ms timer
elapses. This can be done putting this instruction in
the timer service routine. The 1 s timing can be
observed using the same method, but moving the
“CPL P3.7” instruction from the timer interrupt
service routine to the COUNT 1S increment routine,
and applying the P3.7 signal to one led of the 8
LEDS panel.

VII. 16 KEYS MATRICIAL KEYBOARD
INTERFACE APPLICATION

The next application focuses the keyboard data
input. This topic is exercised with the MATRICIAL
KEYBOARD MODULE, connected to the PORT 1,
as shown in Fig. 4.

Sal SNal Nal o

N~ N~ N~
N~ N~ N~
Nl Nl ol N
N~ N~ N~
Ry RN RN W
N~ N~ N~

Fig. 4. MATRICIAL KEYBOARD MODULE
connected to 8051 PORT 1

The software for this application does a column
scan with zero level from P1.0 to P1.3 pins of
PORT1 and detects which key was stroke checking in
which row (P1.4 to P1.7 of PORT 1) the zero level
appear. This scan is done using “SETB bit” and
“CLR bit” instructions. A set of 16 flag bits, in the
bit addressable internal RAM region, are used to store
the information of which key was pressed, and can be
used by another software module, allowing the
exploration of software modularity and the utilization
of variables as interfaces for software modules.

The bouncing problem that arises, when contact
keys are used, can also be explored. A software
counter can be implemented between the scans, and
the counter variable can be modified to match the
debouncing requirements.

To show the result of the keyboard application ,
an ASCII code (hexadecimal code 0, 1,2, 3, ..., 9,
A, B, C, D, E, F, for example) can be assigned to
each key, and showed at the 8 LEDS panel, which is
connected to PORT 3. At each time a key is pressed,
the assigned code appear on the 8 LED panel.

The assembly for this task is shown in Fig. 5.

8 LEDS - 8 KEYS 1/0 MODULE

LEDS
o 0 0 00 0 OO
MATRICIAL KEYBOARD MODULE

KEYS

EIEIEIHHEIEIE

[[[[
[l B [[
[[[[
El B E E

A 8 conductors cables

PO OR
DO - D7
DATA BUS
. 4
H r1 A0-A7
: ADDRESS BUS
8051
F3 A0-A7 oo
P2 ADDRESS
RAM EPROM
GEN. PURPOSE ~ i _\

TTL SOQUETS OOUE OOUE -\

MICROCONTROLLER BOARD

T4LS373

PERSONAL
COMPUTER

EPROM EMULATOR POD

=

— |/
Fig. 5. Module interconnections to develop the
keyboard application

VIII. SERIAL COMMUNICATION
APPLICATION

The suggestion now is to transmit the key pressed
code to another computer by means of a serial
communication channel.

First, all the concepts of serial communication are
presented to the students, like the RS-232 standard,
the DB9 and DB25 connectors pins and signal
assignments, the start bit - stop bit, the parity bit, the
complete signal wave form and the signal voltage
level adaptation using commercial buffers.

Then, we connect the signals of the SERIAL
COMMUNICATION MODULE (which contain the
buffers and a DB25 connector) to the
MICROCONTROLLER BOARD pins that are used
to implement serial communication (RXD/P3.0 and
TXD/P3.1 from PORT 3).

The software is written as an upgrading of the 16
KEYBOARD application software, inserting the serial
initialization and service routine, that transmit the key
pressed to the serial channel.

This application needs another microcomputer,
operating as a terminal, to receive data, and must use
any commercial serial communication program. The
complete modules and computers arrangement is
shown in fig. 6.

Personal Computer
operating as a terminal

—1
—1

DB 25 \onneclor

SERIAL COMMUNICATION MODULE

MATRICIAL KEYBOARD MODULE

I_I yJuusuvE]
8B B @
[I [I 8B B @
8B B @
P .,\m.,. B @ @
—

8 conductors cables

PO OR
DO - D7
DATA BUS
A4
Pl A0 - A7
ADDRESS BU
8051
P3 A0 - A7 BUS
P2 ADDRESS ~ "
RAM EPROM

GEN. PURPOSE ~ ~

11

MICROCONTROLLER BOARD

74LS373

TTL SOQUETS OOUE OOUE r\
PERSONAL
COMPUTER
EPROM EMULATOR POD
—
j

Fig. 6. Arrangement to implement Serial communi-
cation application.

Another possibility in this work, is to analyze the
serial channel operation as a function of the crystal
frequency, and the software modifications need.

IX. LIQUID CRYSTAL DISPLAY
APPLICATION

This very important application is explored
connecting a LIQUID CRYSTAL DISPLAY
MODULE (LCD MODULE), through the
MICROCONTROLER BOARD data bus (D0 - D7)
and address bus (A0 - A15) demultiplexed signals.
The complete arrangement to implement this work is
shown in Fig. 7.

Personal Computer
operating as a terminal

DB 25 connector

\@ SS

SERIAL COMMUNICATION MODULE
/ MATRICIAL KEYBOARD MODULE
B B B B
=] 2] 2]
5| g @
TTL OUT GND TTL IN
T R B @ B @
— 8 cables
/ LIQUID CRYSTAL DISPLAY MODULE
pooooooooDODDODOODOOO
0000000 ooDOO0DOODOO0DODOD
MICROCONTROLLER BOARD
PO OR
A D0 -D7
7418373 DATA BUS
P A0- A7
EE D ADDRESS BUSEE
8051
" A0- A7
E P2 ADDRESSBUS
RAM EPROM

GEN. PU

RPOSE

TTL SOQUETS SOQUET ___SOQUET

PERSONAL
COMPUTER

EPROM EMULATOR POD

=
— L/

Fig. 7. Arrangement to work with the LCD.

The LCD MODULE is composed of a standard
commercial 2 lines x 20 columns LCD, a TTL
inverter and connection pins.

The first program simply executes the display
initialization and performs a simple character transfer
to the display.

The next application explores the LCD
commands, like cursor positioning, left and right
character scroll and cursor format.

Then, an internal RAM character buffer is
transferred to the display, and the proposition is to
use indirect memory addressing mode instructions.
The student makes the first contact with the pointer
concept applied to microcontrollers.

Finally, the last application with LCD uses the
keyboard driver software to implement a data logger
system, that receives and treat all the keys pressed,
show them in the display, stores them in the internal
RAM, working as a data transmitter buffer, and
transmit these characters to the host PC using the
serial channel. A character transfer from the host PC to
the LCD can also be implemented, where the received
caritas are stored in an internal RAM receiver buffer,
and then, when the transmission is finished, the
received caricatures are shown in the LCD.

Another aspect of a more complex system design
that is important to be well specified is the
communication protocol between the microcontroller
based equipment and the host computer. This subject
is also covered, and a personal protocol is
implemented in the software. Some other variations of
the protocol are explained and suggested as future
work.

X. D/A AND A/D CONVERTION

The D/A AND A/D CONVERTER MODULE,
used in this step, was implemented with the DAC800
and AD0800 commercial devices, with a octal latch
and some operational amplifiers to perform high input
impedance, signal level and off-set adjustment.

For the initial D/A application, is suggested to
the student to implement a simple triangular and saw-
tooth wave form generator, the analog output being
observed with an oscilloscope, as shown in Fig. 8.

For the initial A/D application, the suggestion is
to implement a voltmeter, operating in a free running
mode, where the conversion rate can be adjusted by
software. The conversion result is displayed on the
LCD, or can be transmitted to the host PC, using the
serial channel learned before, as an example of a
telemetric system.

XI. NUMERICAL METHODS

Simple numeric routines are explained. This
routines include multi-precision addition, subtraction,
multiplication and division. Signaled numbers and
fixed point are also considered. These routines are
implemented and run, with the results checked using
the LCD as an multiple digit output.

The approximation of integral and derivative
operations are also implemented.

—
—

SERIAL COMMUNICATION MODULE
OSCILLOSCOPE

(1L OUT GND

o=
SN

TLIN
D/A - A/D MODULE

DAC 0800
ANALO

I

OUTPUT

ANALO
INPUT

ADC 0804

MICROCONTROLLER BOARD

7418373

w—
PO OR
D0-D7
DATA BUS
Pl A0- A7
ADDRESS BUS
e 8051
P3 A0-A7
P2 ADDRESs BUS

RAM EPROM

GEN. PURPOSE

TTL SOQUETS UET UET

PERSONAL
COMPUTER

EPROM EMULATOR POD

Fig. 8. The D/A and A/D application.

XII. DIGITAL CONTROL APPLICATION

With the concepts developed in the D/A AND
A/D CONVERTION section and NUMERICAL
METHODS section, the student is apt to develop a
simple control application. The suggestion is to
control a motor shaft speed, using a servomechanism
laboratory set, applying the tachometer signal to a
FREQUENCY TO VOLTAGE CONVERTER,
which output is applied to the A/D channel input,
processing of this signal by means of a control
algorithm, and the resulting action value written to
the D/A latch. The D/A output is applied to a PUSH-
PULL AMPLIFIER, supplying the controlled voltage

to the DC MOTOR. The control algorithm used is
the Digital Proportional-Integral-Derivative (PID),
where the transfer function is translated from s domain
to z domain using the bilinear approximation .

To drive the motor, it’s possible to use a push-
pull amplifier module between the D/A output and
the motor power connectors, or it can be implemented
using the PWM technique, with the PWM BRIDGE
POWER MODULE

TACHOMETER

\L DC MOTOR

- +

E

— 1 |

FREQUENCY TO
VOLTAGE
CONVERTER

PUSH-PULL

to A/D analog input of AMPLIFIER

D/A - AID MODULE

from D/A analog output of
D/A - A/D MODULE

Fig. 9. Digital control application assembly.

XIII. ADVANCED APPLICATION

As a final subject, software structures using state
machine approach, with state variables and a case
structure, is presented.

This technique can be used to solve more complex
problems, like systems with keyboard configuration,
and systems with many modes of operation.

The configuration storing may be implemented
with serial electrically erasable memories (EEPROM).
A set of software routines to drive this devices is
presented and discussed. This routines can be linked
in a more complex software, and called as
subroutines, in conjunction with address and data
variables previously declared.

XIII. CONCLUSIONS

The presented approach is a result of four years of
microcontroller teaching at an undergraduate
engineering course and the summing of a day by day
experience and industrial needs. The effect on the
student staff is a very satisfactory response during the
course.

An evaluation was applied at the end of the course,
using simple questions to evaluate the reactions of the
students and the results are showed on the following
table:

TABLE 1
Score
5 4 3 2 1 0
Course 100 - - - - -
Importance %

Interest on 80 20 - - - R
the Subject % %

Course 80 20 - - - -
Coverage % %
Method 80 20 - - - -

of Approach % %

Equipment 100 - - - - -
Used %

Another positive observation made by the
students was the ability to understand any other
microcontroller family, developed during the training,
because this approach cover many microcontroller
details witch are common to other microcontrollers,
and the principal subjects are the real applications.

Some students showed his personal and
immediate interest because they’re working directly
with this technology.

They also approved the progressively increase of
difficulty and complexity used, and the integration
caracteristic of the course. We noted a great
satisfaction by the students at the end of our work,
when they came with problem’s solution that uses
not only the software/hardware ideas, but also the
philosophy of development learned.

ACKNOWLEDGMENT

The authors thank Mr. Artur Selmikaites, Dr.
Antonio. O. M. Andrade and the Depto. de Eng.
Elétrica da Escola de Engenharia Maud and the
undergraduate electrical engineering students, who
made possible this project.

NOTE

All power supply equipment and connections was
suppressed.

REFERENCES

[1] “8-Bits Embedded Controllers”, Intel
Corporation, 1990.

[2] S. Yeralan and A. Ahluwalia, Programming and
Interfacing the 8051 Microcontroller.
Reading, MA : Addison Wesley Publishing
Company, 1995.

[3] D. V. Hall, Microprocessors and Interfacing :
Programming and Hardware, 2nd ed. Singapure:
McGraw-Hill, 1992

[4] D. Morgan, Numerical Methods / Real-Time and
Embedded Systems Programming.
San Mateo: M&T Books, 1992

[5] K. J. estrim, B. Wittenmark, Computer-
Controlled Systems. Upper Saddle River: Prentice-
Hall, Inc. 1997.

